Cargando…
Using a Hybrid Model to Forecast the Prevalence of Schistosomiasis in Humans
Background: We previously proposed a hybrid model combining both the autoregressive integrated moving average (ARIMA) and the nonlinear autoregressive neural network (NARNN) models in forecasting schistosomiasis. Our purpose in the current study was to forecast the annual prevalence of human schisto...
Autores principales: | Zhou, Lingling, Xia, Jing, Yu, Lijing, Wang, Ying, Shi, Yun, Cai, Shunxiang, Nie, Shaofa |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2016
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4847017/ https://www.ncbi.nlm.nih.gov/pubmed/27023573 http://dx.doi.org/10.3390/ijerph13040355 |
Ejemplares similares
-
A Hybrid Model for Predicting the Prevalence of Schistosomiasis in Humans of Qianjiang City, China
por: Zhou, Lingling, et al.
Publicado: (2014) -
Application of a New Hybrid Model with Seasonal Auto-Regressive Integrated Moving Average (ARIMA) and Nonlinear Auto-Regressive Neural Network (NARNN) in Forecasting Incidence Cases of HFMD in Shenzhen, China
por: Yu, Lijing, et al.
Publicado: (2014) -
Evaluating the Effect of a Novel Molluscicide in the Endemic Schistosomiasis Japonica Area of China
por: Xia, Jing, et al.
Publicado: (2014) -
Comparison of three data mining models for prediction of advanced schistosomiasis prognosis in the Hubei province
por: Li, Guo, et al.
Publicado: (2018) -
Spatial, temporal, and spatiotemporal analysis of malaria in Hubei Province, China from 2004–2011
por: Xia, Jing, et al.
Publicado: (2015)