Cargando…
Bacterial superglue enables easy development of efficient virus-like particle based vaccines
BACKGROUND: Virus-like particles (VLPs) represent a significant advance in the development of subunit vaccines, combining high safety and efficacy. Their particulate nature and dense repetitive subunit organization makes them ideal scaffolds for display of vaccine antigens. Traditional approaches fo...
Autores principales: | , , , , , , , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2016
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4847360/ https://www.ncbi.nlm.nih.gov/pubmed/27117585 http://dx.doi.org/10.1186/s12951-016-0181-1 |
_version_ | 1782429201612144640 |
---|---|
author | Thrane, Susan Janitzek, Christoph M. Matondo, Sungwa Resende, Mafalda Gustavsson, Tobias de Jongh, Willem Adriaan Clemmensen, Stine Roeffen, Will van de Vegte‑Bolmer, Marga van Gemert, Geert Jan Sauerwein, Robert Schiller, John T. Nielsen, Morten A. Theander, Thor G. Salanti, Ali Sander, Adam F. |
author_facet | Thrane, Susan Janitzek, Christoph M. Matondo, Sungwa Resende, Mafalda Gustavsson, Tobias de Jongh, Willem Adriaan Clemmensen, Stine Roeffen, Will van de Vegte‑Bolmer, Marga van Gemert, Geert Jan Sauerwein, Robert Schiller, John T. Nielsen, Morten A. Theander, Thor G. Salanti, Ali Sander, Adam F. |
author_sort | Thrane, Susan |
collection | PubMed |
description | BACKGROUND: Virus-like particles (VLPs) represent a significant advance in the development of subunit vaccines, combining high safety and efficacy. Their particulate nature and dense repetitive subunit organization makes them ideal scaffolds for display of vaccine antigens. Traditional approaches for VLP-based antigen display require labor-intensive trial-and-error optimization, and often fail to generate dense antigen display. Here we utilize the split-intein (SpyTag/SpyCatcher) conjugation system to generate stable isopeptide bound antigen-VLP complexes by simply mixing of the antigen and VLP components. RESULTS: Genetic fusion of SpyTag or SpyCatcher to the N-terminus and/or C-terminus of the Acinetobacter phage AP205 capsid protein resulted in formation of stable, nonaggregated VLPs expressing one SpyCatcher, one SpyTag or two SpyTags per capsid protein. Mixing of spy-VLPs with eleven different vaccine antigens fused to SpyCatcher or SpyTag resulted in formation of antigen-VLP complexes with coupling efficiencies (% occupancy of total VLP binding sites) ranging from 22–88 %. In mice, spy-VLP vaccines presenting the malaria proteins Pfs25 or VAR2CSA markedly increased antibody titer, affinity, longevity and functional efficacy compared to corresponding vaccines employing monomeric proteins. The spy-VLP vaccines also effectively broke B cell self-tolerance and induced potent and durable antibody responses upon vaccination with cancer or allergy-associated self-antigens (PD-L1, CTLA-4 and IL-5). CONCLUSIONS: The spy-VLP system constitutes a versatile and rapid method to develop highly immunogenic VLP-based vaccines. Our data provide proof-of-concept for the technology’s ability to present complex vaccine antigens to the immune system and elicit robust functional antibody responses as well as to efficiently break B cell self-tolerance. The spy-VLP-system may serve as a generic tool for the cost-effective development of effective VLP-vaccines against both infectious- and non-communicable diseases and could facilitate rapid and unbiased screening of vaccine candidate antigens. ELECTRONIC SUPPLEMENTARY MATERIAL: The online version of this article (doi:10.1186/s12951-016-0181-1) contains supplementary material, which is available to authorized users. |
format | Online Article Text |
id | pubmed-4847360 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2016 |
publisher | BioMed Central |
record_format | MEDLINE/PubMed |
spelling | pubmed-48473602016-04-28 Bacterial superglue enables easy development of efficient virus-like particle based vaccines Thrane, Susan Janitzek, Christoph M. Matondo, Sungwa Resende, Mafalda Gustavsson, Tobias de Jongh, Willem Adriaan Clemmensen, Stine Roeffen, Will van de Vegte‑Bolmer, Marga van Gemert, Geert Jan Sauerwein, Robert Schiller, John T. Nielsen, Morten A. Theander, Thor G. Salanti, Ali Sander, Adam F. J Nanobiotechnology Research BACKGROUND: Virus-like particles (VLPs) represent a significant advance in the development of subunit vaccines, combining high safety and efficacy. Their particulate nature and dense repetitive subunit organization makes them ideal scaffolds for display of vaccine antigens. Traditional approaches for VLP-based antigen display require labor-intensive trial-and-error optimization, and often fail to generate dense antigen display. Here we utilize the split-intein (SpyTag/SpyCatcher) conjugation system to generate stable isopeptide bound antigen-VLP complexes by simply mixing of the antigen and VLP components. RESULTS: Genetic fusion of SpyTag or SpyCatcher to the N-terminus and/or C-terminus of the Acinetobacter phage AP205 capsid protein resulted in formation of stable, nonaggregated VLPs expressing one SpyCatcher, one SpyTag or two SpyTags per capsid protein. Mixing of spy-VLPs with eleven different vaccine antigens fused to SpyCatcher or SpyTag resulted in formation of antigen-VLP complexes with coupling efficiencies (% occupancy of total VLP binding sites) ranging from 22–88 %. In mice, spy-VLP vaccines presenting the malaria proteins Pfs25 or VAR2CSA markedly increased antibody titer, affinity, longevity and functional efficacy compared to corresponding vaccines employing monomeric proteins. The spy-VLP vaccines also effectively broke B cell self-tolerance and induced potent and durable antibody responses upon vaccination with cancer or allergy-associated self-antigens (PD-L1, CTLA-4 and IL-5). CONCLUSIONS: The spy-VLP system constitutes a versatile and rapid method to develop highly immunogenic VLP-based vaccines. Our data provide proof-of-concept for the technology’s ability to present complex vaccine antigens to the immune system and elicit robust functional antibody responses as well as to efficiently break B cell self-tolerance. The spy-VLP-system may serve as a generic tool for the cost-effective development of effective VLP-vaccines against both infectious- and non-communicable diseases and could facilitate rapid and unbiased screening of vaccine candidate antigens. ELECTRONIC SUPPLEMENTARY MATERIAL: The online version of this article (doi:10.1186/s12951-016-0181-1) contains supplementary material, which is available to authorized users. BioMed Central 2016-04-27 /pmc/articles/PMC4847360/ /pubmed/27117585 http://dx.doi.org/10.1186/s12951-016-0181-1 Text en © Thrane et al. 2016 Open AccessThis article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated. |
spellingShingle | Research Thrane, Susan Janitzek, Christoph M. Matondo, Sungwa Resende, Mafalda Gustavsson, Tobias de Jongh, Willem Adriaan Clemmensen, Stine Roeffen, Will van de Vegte‑Bolmer, Marga van Gemert, Geert Jan Sauerwein, Robert Schiller, John T. Nielsen, Morten A. Theander, Thor G. Salanti, Ali Sander, Adam F. Bacterial superglue enables easy development of efficient virus-like particle based vaccines |
title | Bacterial superglue enables easy development of efficient virus-like particle based vaccines |
title_full | Bacterial superglue enables easy development of efficient virus-like particle based vaccines |
title_fullStr | Bacterial superglue enables easy development of efficient virus-like particle based vaccines |
title_full_unstemmed | Bacterial superglue enables easy development of efficient virus-like particle based vaccines |
title_short | Bacterial superglue enables easy development of efficient virus-like particle based vaccines |
title_sort | bacterial superglue enables easy development of efficient virus-like particle based vaccines |
topic | Research |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4847360/ https://www.ncbi.nlm.nih.gov/pubmed/27117585 http://dx.doi.org/10.1186/s12951-016-0181-1 |
work_keys_str_mv | AT thranesusan bacterialsuperglueenableseasydevelopmentofefficientviruslikeparticlebasedvaccines AT janitzekchristophm bacterialsuperglueenableseasydevelopmentofefficientviruslikeparticlebasedvaccines AT matondosungwa bacterialsuperglueenableseasydevelopmentofefficientviruslikeparticlebasedvaccines AT resendemafalda bacterialsuperglueenableseasydevelopmentofefficientviruslikeparticlebasedvaccines AT gustavssontobias bacterialsuperglueenableseasydevelopmentofefficientviruslikeparticlebasedvaccines AT dejonghwillemadriaan bacterialsuperglueenableseasydevelopmentofefficientviruslikeparticlebasedvaccines AT clemmensenstine bacterialsuperglueenableseasydevelopmentofefficientviruslikeparticlebasedvaccines AT roeffenwill bacterialsuperglueenableseasydevelopmentofefficientviruslikeparticlebasedvaccines AT vandevegtebolmermarga bacterialsuperglueenableseasydevelopmentofefficientviruslikeparticlebasedvaccines AT vangemertgeertjan bacterialsuperglueenableseasydevelopmentofefficientviruslikeparticlebasedvaccines AT sauerweinrobert bacterialsuperglueenableseasydevelopmentofefficientviruslikeparticlebasedvaccines AT schillerjohnt bacterialsuperglueenableseasydevelopmentofefficientviruslikeparticlebasedvaccines AT nielsenmortena bacterialsuperglueenableseasydevelopmentofefficientviruslikeparticlebasedvaccines AT theanderthorg bacterialsuperglueenableseasydevelopmentofefficientviruslikeparticlebasedvaccines AT salantiali bacterialsuperglueenableseasydevelopmentofefficientviruslikeparticlebasedvaccines AT sanderadamf bacterialsuperglueenableseasydevelopmentofefficientviruslikeparticlebasedvaccines |