Cargando…
Protection of Chloroplast Membranes by VIPP1 Rescues Aberrant Seedling Development in Arabidopsis nyc1 Mutant
Chlorophylls (Chl) in photosynthetic apparatuses, along with other macromolecules in chloroplasts, are known to undergo degradation during leaf senescence. Several enzymes involved in Chl degradation, by which detoxification of Chl is safely implemented, have been identified. Chl degradation also oc...
Autores principales: | , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2016
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4848304/ https://www.ncbi.nlm.nih.gov/pubmed/27200011 http://dx.doi.org/10.3389/fpls.2016.00533 |
_version_ | 1782429313832845312 |
---|---|
author | Zhang, Lingang Kusaba, Makoto Tanaka, Ayumi Sakamoto, Wataru |
author_facet | Zhang, Lingang Kusaba, Makoto Tanaka, Ayumi Sakamoto, Wataru |
author_sort | Zhang, Lingang |
collection | PubMed |
description | Chlorophylls (Chl) in photosynthetic apparatuses, along with other macromolecules in chloroplasts, are known to undergo degradation during leaf senescence. Several enzymes involved in Chl degradation, by which detoxification of Chl is safely implemented, have been identified. Chl degradation also occurs during embryogenesis and seedling development. Some genes encoding Chl degradation enzymes such as Chl b reductase (CBR) function during these developmental stages. Arabidopsis mutants lacking CBR (NYC1 and NOL) have been reported to exhibit reduced seed storability, compromised germination, and cotyledon development. In this study, we examined aberrant cotyledon development and found that NYC1 is solely responsible for this phenotype. We inferred that oxidative damage of chloroplast membranes caused the aberrant cotyledon. To test the inference, we attempted to trans-complement nyc1 mutant with overexpressing VIPP1 protein that is unrelated to Chl degradation but which supports chloroplast membrane integrity. VIPP1 expression actually complemented the aberrant cotyledon of nyc1, whereas stay-green phenotype during leaf senescence remained. The swollen chloroplasts observed in unfixed cotyledons of nyc1, which are characteristics of chloroplasts receiving envelope membrane damage, were recovered by overexpressing VIPP1. These results suggest that chloroplast membranes are a target for oxidative damage caused by the impairment in Chl degradation. Trans-complementation of nyc1 with VIPP1 also suggests that VIPP1 is useful for protecting chloroplasts against oxidative stress. |
format | Online Article Text |
id | pubmed-4848304 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2016 |
publisher | Frontiers Media S.A. |
record_format | MEDLINE/PubMed |
spelling | pubmed-48483042016-05-19 Protection of Chloroplast Membranes by VIPP1 Rescues Aberrant Seedling Development in Arabidopsis nyc1 Mutant Zhang, Lingang Kusaba, Makoto Tanaka, Ayumi Sakamoto, Wataru Front Plant Sci Plant Science Chlorophylls (Chl) in photosynthetic apparatuses, along with other macromolecules in chloroplasts, are known to undergo degradation during leaf senescence. Several enzymes involved in Chl degradation, by which detoxification of Chl is safely implemented, have been identified. Chl degradation also occurs during embryogenesis and seedling development. Some genes encoding Chl degradation enzymes such as Chl b reductase (CBR) function during these developmental stages. Arabidopsis mutants lacking CBR (NYC1 and NOL) have been reported to exhibit reduced seed storability, compromised germination, and cotyledon development. In this study, we examined aberrant cotyledon development and found that NYC1 is solely responsible for this phenotype. We inferred that oxidative damage of chloroplast membranes caused the aberrant cotyledon. To test the inference, we attempted to trans-complement nyc1 mutant with overexpressing VIPP1 protein that is unrelated to Chl degradation but which supports chloroplast membrane integrity. VIPP1 expression actually complemented the aberrant cotyledon of nyc1, whereas stay-green phenotype during leaf senescence remained. The swollen chloroplasts observed in unfixed cotyledons of nyc1, which are characteristics of chloroplasts receiving envelope membrane damage, were recovered by overexpressing VIPP1. These results suggest that chloroplast membranes are a target for oxidative damage caused by the impairment in Chl degradation. Trans-complementation of nyc1 with VIPP1 also suggests that VIPP1 is useful for protecting chloroplasts against oxidative stress. Frontiers Media S.A. 2016-04-28 /pmc/articles/PMC4848304/ /pubmed/27200011 http://dx.doi.org/10.3389/fpls.2016.00533 Text en Copyright © 2016 Zhang, Kusaba, Tanaka and Sakamoto. http://creativecommons.org/licenses/by/4.0/ This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) or licensor are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms. |
spellingShingle | Plant Science Zhang, Lingang Kusaba, Makoto Tanaka, Ayumi Sakamoto, Wataru Protection of Chloroplast Membranes by VIPP1 Rescues Aberrant Seedling Development in Arabidopsis nyc1 Mutant |
title | Protection of Chloroplast Membranes by VIPP1 Rescues Aberrant Seedling Development in Arabidopsis
nyc1 Mutant |
title_full | Protection of Chloroplast Membranes by VIPP1 Rescues Aberrant Seedling Development in Arabidopsis
nyc1 Mutant |
title_fullStr | Protection of Chloroplast Membranes by VIPP1 Rescues Aberrant Seedling Development in Arabidopsis
nyc1 Mutant |
title_full_unstemmed | Protection of Chloroplast Membranes by VIPP1 Rescues Aberrant Seedling Development in Arabidopsis
nyc1 Mutant |
title_short | Protection of Chloroplast Membranes by VIPP1 Rescues Aberrant Seedling Development in Arabidopsis
nyc1 Mutant |
title_sort | protection of chloroplast membranes by vipp1 rescues aberrant seedling development in arabidopsis
nyc1 mutant |
topic | Plant Science |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4848304/ https://www.ncbi.nlm.nih.gov/pubmed/27200011 http://dx.doi.org/10.3389/fpls.2016.00533 |
work_keys_str_mv | AT zhanglingang protectionofchloroplastmembranesbyvipp1rescuesaberrantseedlingdevelopmentinarabidopsisnyc1mutant AT kusabamakoto protectionofchloroplastmembranesbyvipp1rescuesaberrantseedlingdevelopmentinarabidopsisnyc1mutant AT tanakaayumi protectionofchloroplastmembranesbyvipp1rescuesaberrantseedlingdevelopmentinarabidopsisnyc1mutant AT sakamotowataru protectionofchloroplastmembranesbyvipp1rescuesaberrantseedlingdevelopmentinarabidopsisnyc1mutant |