Cargando…
Bayesian variable selection for binary outcomes in high-dimensional genomic studies using non-local priors
Motivation: The advent of new genomic technologies has resulted in the production of massive data sets. Analyses of these data require new statistical and computational methods. In this article, we propose one such method that is useful in selecting explanatory variables for prediction of a binary r...
Autores principales: | Nikooienejad, Amir, Wang, Wenyi, Johnson, Valen E. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Oxford University Press
2016
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4848399/ https://www.ncbi.nlm.nih.gov/pubmed/26740524 http://dx.doi.org/10.1093/bioinformatics/btv764 |
Ejemplares similares
-
Bayesian Methods for Meta-Analyses of Binary Outcomes: Implementations, Examples, and Impact of Priors
por: Al Amer, Fahad M., et al.
Publicado: (2021) -
Bayesian Meta-Analysis for Binary Data and Prior Distribution on Models
por: Negrín-Hernández, Miguel-Angel, et al.
Publicado: (2021) -
Prediction and Variable Selection in High-Dimensional Misspecified Binary Classification
por: Furmańczyk, Konrad, et al.
Publicado: (2020) -
Bayesian variable selection for high dimensional predictors and self-reported outcomes
por: Gu, Xiangdong, et al.
Publicado: (2020) -
Integrative Bayesian variable selection with gene-based informative priors for genome-wide association studies
por: Zhang, Xiaoshuai, et al.
Publicado: (2014)