Cargando…

MTG2: an efficient algorithm for multivariate linear mixed model analysis based on genomic information

Summary: We have developed an algorithm for genetic analysis of complex traits using genome-wide SNPs in a linear mixed model framework. Compared to current standard REML software based on the mixed model equation, our method is substantially faster. The advantage is largest when there is only a sin...

Descripción completa

Detalles Bibliográficos
Autores principales: Lee, S. H., van der Werf, J. H. J.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Oxford University Press 2016
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4848406/
https://www.ncbi.nlm.nih.gov/pubmed/26755623
http://dx.doi.org/10.1093/bioinformatics/btw012
Descripción
Sumario:Summary: We have developed an algorithm for genetic analysis of complex traits using genome-wide SNPs in a linear mixed model framework. Compared to current standard REML software based on the mixed model equation, our method is substantially faster. The advantage is largest when there is only a single genetic covariance structure. The method is particularly useful for multivariate analysis, including multi-trait models and random regression models for studying reaction norms. We applied our proposed method to publicly available mice and human data and discuss the advantages and limitations. Availability and implementation: MTG2 is available in https://sites.google.com/site/honglee0707/mtg2. Contact: hong.lee@une.edu.au Supplementary information: Supplementary data are available at Bioinformatics online.