Cargando…
Collaborative analysis of multi-gigapixel imaging data using Cytomine
Motivation: Collaborative analysis of massive imaging datasets is essential to enable scientific discoveries. Results: We developed Cytomine to foster active and distributed collaboration of multidisciplinary teams for large-scale image-based studies. It uses web development methodologies and machin...
Autores principales: | , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Oxford University Press
2016
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4848407/ https://www.ncbi.nlm.nih.gov/pubmed/26755625 http://dx.doi.org/10.1093/bioinformatics/btw013 |
_version_ | 1782429336430706688 |
---|---|
author | Marée, Raphaël Rollus, Loïc Stévens, Benjamin Hoyoux, Renaud Louppe, Gilles Vandaele, Rémy Begon, Jean-Michel Kainz, Philipp Geurts, Pierre Wehenkel, Louis |
author_facet | Marée, Raphaël Rollus, Loïc Stévens, Benjamin Hoyoux, Renaud Louppe, Gilles Vandaele, Rémy Begon, Jean-Michel Kainz, Philipp Geurts, Pierre Wehenkel, Louis |
author_sort | Marée, Raphaël |
collection | PubMed |
description | Motivation: Collaborative analysis of massive imaging datasets is essential to enable scientific discoveries. Results: We developed Cytomine to foster active and distributed collaboration of multidisciplinary teams for large-scale image-based studies. It uses web development methodologies and machine learning in order to readily organize, explore, share and analyze (semantically and quantitatively) multi-gigapixel imaging data over the internet. We illustrate how it has been used in several biomedical applications. Availability and implementation: Cytomine (http://www.cytomine.be/) is freely available under an open-source license from http://github.com/cytomine/. A documentation wiki (http://doc.cytomine.be) and a demo server (http://demo.cytomine.be) are also available. Contact: info@cytomine.be Supplementary information: Supplementary data are available at Bioinformatics online. |
format | Online Article Text |
id | pubmed-4848407 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2016 |
publisher | Oxford University Press |
record_format | MEDLINE/PubMed |
spelling | pubmed-48484072016-04-29 Collaborative analysis of multi-gigapixel imaging data using Cytomine Marée, Raphaël Rollus, Loïc Stévens, Benjamin Hoyoux, Renaud Louppe, Gilles Vandaele, Rémy Begon, Jean-Michel Kainz, Philipp Geurts, Pierre Wehenkel, Louis Bioinformatics Original Papers Motivation: Collaborative analysis of massive imaging datasets is essential to enable scientific discoveries. Results: We developed Cytomine to foster active and distributed collaboration of multidisciplinary teams for large-scale image-based studies. It uses web development methodologies and machine learning in order to readily organize, explore, share and analyze (semantically and quantitatively) multi-gigapixel imaging data over the internet. We illustrate how it has been used in several biomedical applications. Availability and implementation: Cytomine (http://www.cytomine.be/) is freely available under an open-source license from http://github.com/cytomine/. A documentation wiki (http://doc.cytomine.be) and a demo server (http://demo.cytomine.be) are also available. Contact: info@cytomine.be Supplementary information: Supplementary data are available at Bioinformatics online. Oxford University Press 2016-05-01 2016-01-10 /pmc/articles/PMC4848407/ /pubmed/26755625 http://dx.doi.org/10.1093/bioinformatics/btw013 Text en © The Author 2016. Published by Oxford University Press. http://creativecommons.org/licenses/by/4.0/ This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted reuse, distribution, and reproduction in any medium, provided the original work is properly cited. |
spellingShingle | Original Papers Marée, Raphaël Rollus, Loïc Stévens, Benjamin Hoyoux, Renaud Louppe, Gilles Vandaele, Rémy Begon, Jean-Michel Kainz, Philipp Geurts, Pierre Wehenkel, Louis Collaborative analysis of multi-gigapixel imaging data using Cytomine |
title | Collaborative analysis of multi-gigapixel imaging data using Cytomine |
title_full | Collaborative analysis of multi-gigapixel imaging data using Cytomine |
title_fullStr | Collaborative analysis of multi-gigapixel imaging data using Cytomine |
title_full_unstemmed | Collaborative analysis of multi-gigapixel imaging data using Cytomine |
title_short | Collaborative analysis of multi-gigapixel imaging data using Cytomine |
title_sort | collaborative analysis of multi-gigapixel imaging data using cytomine |
topic | Original Papers |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4848407/ https://www.ncbi.nlm.nih.gov/pubmed/26755625 http://dx.doi.org/10.1093/bioinformatics/btw013 |
work_keys_str_mv | AT mareeraphael collaborativeanalysisofmultigigapixelimagingdatausingcytomine AT rollusloic collaborativeanalysisofmultigigapixelimagingdatausingcytomine AT stevensbenjamin collaborativeanalysisofmultigigapixelimagingdatausingcytomine AT hoyouxrenaud collaborativeanalysisofmultigigapixelimagingdatausingcytomine AT louppegilles collaborativeanalysisofmultigigapixelimagingdatausingcytomine AT vandaeleremy collaborativeanalysisofmultigigapixelimagingdatausingcytomine AT begonjeanmichel collaborativeanalysisofmultigigapixelimagingdatausingcytomine AT kainzphilipp collaborativeanalysisofmultigigapixelimagingdatausingcytomine AT geurtspierre collaborativeanalysisofmultigigapixelimagingdatausingcytomine AT wehenkellouis collaborativeanalysisofmultigigapixelimagingdatausingcytomine |