Cargando…

Collaborative analysis of multi-gigapixel imaging data using Cytomine

Motivation: Collaborative analysis of massive imaging datasets is essential to enable scientific discoveries. Results: We developed Cytomine to foster active and distributed collaboration of multidisciplinary teams for large-scale image-based studies. It uses web development methodologies and machin...

Descripción completa

Detalles Bibliográficos
Autores principales: Marée, Raphaël, Rollus, Loïc, Stévens, Benjamin, Hoyoux, Renaud, Louppe, Gilles, Vandaele, Rémy, Begon, Jean-Michel, Kainz, Philipp, Geurts, Pierre, Wehenkel, Louis
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Oxford University Press 2016
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4848407/
https://www.ncbi.nlm.nih.gov/pubmed/26755625
http://dx.doi.org/10.1093/bioinformatics/btw013
_version_ 1782429336430706688
author Marée, Raphaël
Rollus, Loïc
Stévens, Benjamin
Hoyoux, Renaud
Louppe, Gilles
Vandaele, Rémy
Begon, Jean-Michel
Kainz, Philipp
Geurts, Pierre
Wehenkel, Louis
author_facet Marée, Raphaël
Rollus, Loïc
Stévens, Benjamin
Hoyoux, Renaud
Louppe, Gilles
Vandaele, Rémy
Begon, Jean-Michel
Kainz, Philipp
Geurts, Pierre
Wehenkel, Louis
author_sort Marée, Raphaël
collection PubMed
description Motivation: Collaborative analysis of massive imaging datasets is essential to enable scientific discoveries. Results: We developed Cytomine to foster active and distributed collaboration of multidisciplinary teams for large-scale image-based studies. It uses web development methodologies and machine learning in order to readily organize, explore, share and analyze (semantically and quantitatively) multi-gigapixel imaging data over the internet. We illustrate how it has been used in several biomedical applications. Availability and implementation: Cytomine (http://www.cytomine.be/) is freely available under an open-source license from http://github.com/cytomine/. A documentation wiki (http://doc.cytomine.be) and a demo server (http://demo.cytomine.be) are also available. Contact: info@cytomine.be Supplementary information: Supplementary data are available at Bioinformatics online.
format Online
Article
Text
id pubmed-4848407
institution National Center for Biotechnology Information
language English
publishDate 2016
publisher Oxford University Press
record_format MEDLINE/PubMed
spelling pubmed-48484072016-04-29 Collaborative analysis of multi-gigapixel imaging data using Cytomine Marée, Raphaël Rollus, Loïc Stévens, Benjamin Hoyoux, Renaud Louppe, Gilles Vandaele, Rémy Begon, Jean-Michel Kainz, Philipp Geurts, Pierre Wehenkel, Louis Bioinformatics Original Papers Motivation: Collaborative analysis of massive imaging datasets is essential to enable scientific discoveries. Results: We developed Cytomine to foster active and distributed collaboration of multidisciplinary teams for large-scale image-based studies. It uses web development methodologies and machine learning in order to readily organize, explore, share and analyze (semantically and quantitatively) multi-gigapixel imaging data over the internet. We illustrate how it has been used in several biomedical applications. Availability and implementation: Cytomine (http://www.cytomine.be/) is freely available under an open-source license from http://github.com/cytomine/. A documentation wiki (http://doc.cytomine.be) and a demo server (http://demo.cytomine.be) are also available. Contact: info@cytomine.be Supplementary information: Supplementary data are available at Bioinformatics online. Oxford University Press 2016-05-01 2016-01-10 /pmc/articles/PMC4848407/ /pubmed/26755625 http://dx.doi.org/10.1093/bioinformatics/btw013 Text en © The Author 2016. Published by Oxford University Press. http://creativecommons.org/licenses/by/4.0/ This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted reuse, distribution, and reproduction in any medium, provided the original work is properly cited.
spellingShingle Original Papers
Marée, Raphaël
Rollus, Loïc
Stévens, Benjamin
Hoyoux, Renaud
Louppe, Gilles
Vandaele, Rémy
Begon, Jean-Michel
Kainz, Philipp
Geurts, Pierre
Wehenkel, Louis
Collaborative analysis of multi-gigapixel imaging data using Cytomine
title Collaborative analysis of multi-gigapixel imaging data using Cytomine
title_full Collaborative analysis of multi-gigapixel imaging data using Cytomine
title_fullStr Collaborative analysis of multi-gigapixel imaging data using Cytomine
title_full_unstemmed Collaborative analysis of multi-gigapixel imaging data using Cytomine
title_short Collaborative analysis of multi-gigapixel imaging data using Cytomine
title_sort collaborative analysis of multi-gigapixel imaging data using cytomine
topic Original Papers
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4848407/
https://www.ncbi.nlm.nih.gov/pubmed/26755625
http://dx.doi.org/10.1093/bioinformatics/btw013
work_keys_str_mv AT mareeraphael collaborativeanalysisofmultigigapixelimagingdatausingcytomine
AT rollusloic collaborativeanalysisofmultigigapixelimagingdatausingcytomine
AT stevensbenjamin collaborativeanalysisofmultigigapixelimagingdatausingcytomine
AT hoyouxrenaud collaborativeanalysisofmultigigapixelimagingdatausingcytomine
AT louppegilles collaborativeanalysisofmultigigapixelimagingdatausingcytomine
AT vandaeleremy collaborativeanalysisofmultigigapixelimagingdatausingcytomine
AT begonjeanmichel collaborativeanalysisofmultigigapixelimagingdatausingcytomine
AT kainzphilipp collaborativeanalysisofmultigigapixelimagingdatausingcytomine
AT geurtspierre collaborativeanalysisofmultigigapixelimagingdatausingcytomine
AT wehenkellouis collaborativeanalysisofmultigigapixelimagingdatausingcytomine