Cargando…

A modular design of molecular qubits to implement universal quantum gates

The physical implementation of quantum information processing relies on individual modules—qubits—and operations that modify such modules either individually or in groups—quantum gates. Two examples of gates that entangle pairs of qubits are the controlled NOT-gate (CNOT) gate, which flips the state...

Descripción completa

Detalles Bibliográficos
Autores principales: Ferrando-Soria, Jesús, Moreno Pineda, Eufemio, Chiesa, Alessandro, Fernandez, Antonio, Magee, Samantha A., Carretta, Stefano, Santini, Paolo, Vitorica-Yrezabal, Iñigo J., Tuna, Floriana, Timco, Grigore A., McInnes, Eric J.L., Winpenny, Richard E.P.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Nature Publishing Group 2016
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4848482/
https://www.ncbi.nlm.nih.gov/pubmed/27109358
http://dx.doi.org/10.1038/ncomms11377
_version_ 1782429350995427328
author Ferrando-Soria, Jesús
Moreno Pineda, Eufemio
Chiesa, Alessandro
Fernandez, Antonio
Magee, Samantha A.
Carretta, Stefano
Santini, Paolo
Vitorica-Yrezabal, Iñigo J.
Tuna, Floriana
Timco, Grigore A.
McInnes, Eric J.L.
Winpenny, Richard E.P.
author_facet Ferrando-Soria, Jesús
Moreno Pineda, Eufemio
Chiesa, Alessandro
Fernandez, Antonio
Magee, Samantha A.
Carretta, Stefano
Santini, Paolo
Vitorica-Yrezabal, Iñigo J.
Tuna, Floriana
Timco, Grigore A.
McInnes, Eric J.L.
Winpenny, Richard E.P.
author_sort Ferrando-Soria, Jesús
collection PubMed
description The physical implementation of quantum information processing relies on individual modules—qubits—and operations that modify such modules either individually or in groups—quantum gates. Two examples of gates that entangle pairs of qubits are the controlled NOT-gate (CNOT) gate, which flips the state of one qubit depending on the state of another, and the [Image: see text] gate that brings a two-qubit product state into a superposition involving partially swapping the qubit states. Here we show that through supramolecular chemistry a single simple module, molecular {Cr(7)Ni} rings, which act as the qubits, can be assembled into structures suitable for either the CNOT or [Image: see text] gate by choice of linker, and we characterize these structures by electron spin resonance spectroscopy. We introduce two schemes for implementing such gates with these supramolecular assemblies and perform detailed simulations, based on the measured parameters including decoherence, to demonstrate how the gates would operate.
format Online
Article
Text
id pubmed-4848482
institution National Center for Biotechnology Information
language English
publishDate 2016
publisher Nature Publishing Group
record_format MEDLINE/PubMed
spelling pubmed-48484822016-05-05 A modular design of molecular qubits to implement universal quantum gates Ferrando-Soria, Jesús Moreno Pineda, Eufemio Chiesa, Alessandro Fernandez, Antonio Magee, Samantha A. Carretta, Stefano Santini, Paolo Vitorica-Yrezabal, Iñigo J. Tuna, Floriana Timco, Grigore A. McInnes, Eric J.L. Winpenny, Richard E.P. Nat Commun Article The physical implementation of quantum information processing relies on individual modules—qubits—and operations that modify such modules either individually or in groups—quantum gates. Two examples of gates that entangle pairs of qubits are the controlled NOT-gate (CNOT) gate, which flips the state of one qubit depending on the state of another, and the [Image: see text] gate that brings a two-qubit product state into a superposition involving partially swapping the qubit states. Here we show that through supramolecular chemistry a single simple module, molecular {Cr(7)Ni} rings, which act as the qubits, can be assembled into structures suitable for either the CNOT or [Image: see text] gate by choice of linker, and we characterize these structures by electron spin resonance spectroscopy. We introduce two schemes for implementing such gates with these supramolecular assemblies and perform detailed simulations, based on the measured parameters including decoherence, to demonstrate how the gates would operate. Nature Publishing Group 2016-04-25 /pmc/articles/PMC4848482/ /pubmed/27109358 http://dx.doi.org/10.1038/ncomms11377 Text en Copyright © 2016, Nature Publishing Group, a division of Macmillan Publishers Limited. All Rights Reserved. http://creativecommons.org/licenses/by/4.0/ This work is licensed under a Creative Commons Attribution 4.0 International License. The images or other third party material in this article are included in the article's Creative Commons license, unless indicated otherwise in the credit line; if the material is not included under the Creative Commons license, users will need to obtain permission from the license holder to reproduce the material. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/
spellingShingle Article
Ferrando-Soria, Jesús
Moreno Pineda, Eufemio
Chiesa, Alessandro
Fernandez, Antonio
Magee, Samantha A.
Carretta, Stefano
Santini, Paolo
Vitorica-Yrezabal, Iñigo J.
Tuna, Floriana
Timco, Grigore A.
McInnes, Eric J.L.
Winpenny, Richard E.P.
A modular design of molecular qubits to implement universal quantum gates
title A modular design of molecular qubits to implement universal quantum gates
title_full A modular design of molecular qubits to implement universal quantum gates
title_fullStr A modular design of molecular qubits to implement universal quantum gates
title_full_unstemmed A modular design of molecular qubits to implement universal quantum gates
title_short A modular design of molecular qubits to implement universal quantum gates
title_sort modular design of molecular qubits to implement universal quantum gates
topic Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4848482/
https://www.ncbi.nlm.nih.gov/pubmed/27109358
http://dx.doi.org/10.1038/ncomms11377
work_keys_str_mv AT ferrandosoriajesus amodulardesignofmolecularqubitstoimplementuniversalquantumgates
AT morenopinedaeufemio amodulardesignofmolecularqubitstoimplementuniversalquantumgates
AT chiesaalessandro amodulardesignofmolecularqubitstoimplementuniversalquantumgates
AT fernandezantonio amodulardesignofmolecularqubitstoimplementuniversalquantumgates
AT mageesamanthaa amodulardesignofmolecularqubitstoimplementuniversalquantumgates
AT carrettastefano amodulardesignofmolecularqubitstoimplementuniversalquantumgates
AT santinipaolo amodulardesignofmolecularqubitstoimplementuniversalquantumgates
AT vitoricayrezabalinigoj amodulardesignofmolecularqubitstoimplementuniversalquantumgates
AT tunafloriana amodulardesignofmolecularqubitstoimplementuniversalquantumgates
AT timcogrigorea amodulardesignofmolecularqubitstoimplementuniversalquantumgates
AT mcinnesericjl amodulardesignofmolecularqubitstoimplementuniversalquantumgates
AT winpennyrichardep amodulardesignofmolecularqubitstoimplementuniversalquantumgates
AT ferrandosoriajesus modulardesignofmolecularqubitstoimplementuniversalquantumgates
AT morenopinedaeufemio modulardesignofmolecularqubitstoimplementuniversalquantumgates
AT chiesaalessandro modulardesignofmolecularqubitstoimplementuniversalquantumgates
AT fernandezantonio modulardesignofmolecularqubitstoimplementuniversalquantumgates
AT mageesamanthaa modulardesignofmolecularqubitstoimplementuniversalquantumgates
AT carrettastefano modulardesignofmolecularqubitstoimplementuniversalquantumgates
AT santinipaolo modulardesignofmolecularqubitstoimplementuniversalquantumgates
AT vitoricayrezabalinigoj modulardesignofmolecularqubitstoimplementuniversalquantumgates
AT tunafloriana modulardesignofmolecularqubitstoimplementuniversalquantumgates
AT timcogrigorea modulardesignofmolecularqubitstoimplementuniversalquantumgates
AT mcinnesericjl modulardesignofmolecularqubitstoimplementuniversalquantumgates
AT winpennyrichardep modulardesignofmolecularqubitstoimplementuniversalquantumgates