Cargando…
A modular design of molecular qubits to implement universal quantum gates
The physical implementation of quantum information processing relies on individual modules—qubits—and operations that modify such modules either individually or in groups—quantum gates. Two examples of gates that entangle pairs of qubits are the controlled NOT-gate (CNOT) gate, which flips the state...
Autores principales: | , , , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group
2016
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4848482/ https://www.ncbi.nlm.nih.gov/pubmed/27109358 http://dx.doi.org/10.1038/ncomms11377 |
_version_ | 1782429350995427328 |
---|---|
author | Ferrando-Soria, Jesús Moreno Pineda, Eufemio Chiesa, Alessandro Fernandez, Antonio Magee, Samantha A. Carretta, Stefano Santini, Paolo Vitorica-Yrezabal, Iñigo J. Tuna, Floriana Timco, Grigore A. McInnes, Eric J.L. Winpenny, Richard E.P. |
author_facet | Ferrando-Soria, Jesús Moreno Pineda, Eufemio Chiesa, Alessandro Fernandez, Antonio Magee, Samantha A. Carretta, Stefano Santini, Paolo Vitorica-Yrezabal, Iñigo J. Tuna, Floriana Timco, Grigore A. McInnes, Eric J.L. Winpenny, Richard E.P. |
author_sort | Ferrando-Soria, Jesús |
collection | PubMed |
description | The physical implementation of quantum information processing relies on individual modules—qubits—and operations that modify such modules either individually or in groups—quantum gates. Two examples of gates that entangle pairs of qubits are the controlled NOT-gate (CNOT) gate, which flips the state of one qubit depending on the state of another, and the [Image: see text] gate that brings a two-qubit product state into a superposition involving partially swapping the qubit states. Here we show that through supramolecular chemistry a single simple module, molecular {Cr(7)Ni} rings, which act as the qubits, can be assembled into structures suitable for either the CNOT or [Image: see text] gate by choice of linker, and we characterize these structures by electron spin resonance spectroscopy. We introduce two schemes for implementing such gates with these supramolecular assemblies and perform detailed simulations, based on the measured parameters including decoherence, to demonstrate how the gates would operate. |
format | Online Article Text |
id | pubmed-4848482 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2016 |
publisher | Nature Publishing Group |
record_format | MEDLINE/PubMed |
spelling | pubmed-48484822016-05-05 A modular design of molecular qubits to implement universal quantum gates Ferrando-Soria, Jesús Moreno Pineda, Eufemio Chiesa, Alessandro Fernandez, Antonio Magee, Samantha A. Carretta, Stefano Santini, Paolo Vitorica-Yrezabal, Iñigo J. Tuna, Floriana Timco, Grigore A. McInnes, Eric J.L. Winpenny, Richard E.P. Nat Commun Article The physical implementation of quantum information processing relies on individual modules—qubits—and operations that modify such modules either individually or in groups—quantum gates. Two examples of gates that entangle pairs of qubits are the controlled NOT-gate (CNOT) gate, which flips the state of one qubit depending on the state of another, and the [Image: see text] gate that brings a two-qubit product state into a superposition involving partially swapping the qubit states. Here we show that through supramolecular chemistry a single simple module, molecular {Cr(7)Ni} rings, which act as the qubits, can be assembled into structures suitable for either the CNOT or [Image: see text] gate by choice of linker, and we characterize these structures by electron spin resonance spectroscopy. We introduce two schemes for implementing such gates with these supramolecular assemblies and perform detailed simulations, based on the measured parameters including decoherence, to demonstrate how the gates would operate. Nature Publishing Group 2016-04-25 /pmc/articles/PMC4848482/ /pubmed/27109358 http://dx.doi.org/10.1038/ncomms11377 Text en Copyright © 2016, Nature Publishing Group, a division of Macmillan Publishers Limited. All Rights Reserved. http://creativecommons.org/licenses/by/4.0/ This work is licensed under a Creative Commons Attribution 4.0 International License. The images or other third party material in this article are included in the article's Creative Commons license, unless indicated otherwise in the credit line; if the material is not included under the Creative Commons license, users will need to obtain permission from the license holder to reproduce the material. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/ |
spellingShingle | Article Ferrando-Soria, Jesús Moreno Pineda, Eufemio Chiesa, Alessandro Fernandez, Antonio Magee, Samantha A. Carretta, Stefano Santini, Paolo Vitorica-Yrezabal, Iñigo J. Tuna, Floriana Timco, Grigore A. McInnes, Eric J.L. Winpenny, Richard E.P. A modular design of molecular qubits to implement universal quantum gates |
title | A modular design of molecular qubits to implement universal quantum gates |
title_full | A modular design of molecular qubits to implement universal quantum gates |
title_fullStr | A modular design of molecular qubits to implement universal quantum gates |
title_full_unstemmed | A modular design of molecular qubits to implement universal quantum gates |
title_short | A modular design of molecular qubits to implement universal quantum gates |
title_sort | modular design of molecular qubits to implement universal quantum gates |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4848482/ https://www.ncbi.nlm.nih.gov/pubmed/27109358 http://dx.doi.org/10.1038/ncomms11377 |
work_keys_str_mv | AT ferrandosoriajesus amodulardesignofmolecularqubitstoimplementuniversalquantumgates AT morenopinedaeufemio amodulardesignofmolecularqubitstoimplementuniversalquantumgates AT chiesaalessandro amodulardesignofmolecularqubitstoimplementuniversalquantumgates AT fernandezantonio amodulardesignofmolecularqubitstoimplementuniversalquantumgates AT mageesamanthaa amodulardesignofmolecularqubitstoimplementuniversalquantumgates AT carrettastefano amodulardesignofmolecularqubitstoimplementuniversalquantumgates AT santinipaolo amodulardesignofmolecularqubitstoimplementuniversalquantumgates AT vitoricayrezabalinigoj amodulardesignofmolecularqubitstoimplementuniversalquantumgates AT tunafloriana amodulardesignofmolecularqubitstoimplementuniversalquantumgates AT timcogrigorea amodulardesignofmolecularqubitstoimplementuniversalquantumgates AT mcinnesericjl amodulardesignofmolecularqubitstoimplementuniversalquantumgates AT winpennyrichardep amodulardesignofmolecularqubitstoimplementuniversalquantumgates AT ferrandosoriajesus modulardesignofmolecularqubitstoimplementuniversalquantumgates AT morenopinedaeufemio modulardesignofmolecularqubitstoimplementuniversalquantumgates AT chiesaalessandro modulardesignofmolecularqubitstoimplementuniversalquantumgates AT fernandezantonio modulardesignofmolecularqubitstoimplementuniversalquantumgates AT mageesamanthaa modulardesignofmolecularqubitstoimplementuniversalquantumgates AT carrettastefano modulardesignofmolecularqubitstoimplementuniversalquantumgates AT santinipaolo modulardesignofmolecularqubitstoimplementuniversalquantumgates AT vitoricayrezabalinigoj modulardesignofmolecularqubitstoimplementuniversalquantumgates AT tunafloriana modulardesignofmolecularqubitstoimplementuniversalquantumgates AT timcogrigorea modulardesignofmolecularqubitstoimplementuniversalquantumgates AT mcinnesericjl modulardesignofmolecularqubitstoimplementuniversalquantumgates AT winpennyrichardep modulardesignofmolecularqubitstoimplementuniversalquantumgates |