Cargando…
Identifying genetically driven clinical phenotypes using linear mixed models
We hypothesized that generalized linear mixed models (GLMMs), which estimate the additive genetic variance underlying phenotype variability, would facilitate rapid characterization of clinical phenotypes from an electronic health record. We evaluated 1,288 phenotypes in 29,349 subjects of European a...
Autores principales: | Mosley, Jonathan D., Witte, John S., Larkin, Emma K., Bastarache, Lisa, Shaffer, Christian M., Karnes, Jason H., Stein, C. Michael, Phillips, Elizabeth, Hebbring, Scott J., Brilliant, Murray H., Mayer, John, Ye, Zhan, Roden, Dan M., Denny, Joshua C. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group
2016
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4848547/ https://www.ncbi.nlm.nih.gov/pubmed/27109359 http://dx.doi.org/10.1038/ncomms11433 |
Ejemplares similares
-
Comparison of HLA allelic imputation programs
por: Karnes, Jason H., et al.
Publicado: (2017) -
Estimating the efficacy of pharmacogenomics over a lifetime
por: Ye, Zhan, et al.
Publicado: (2023) -
Integrating EMR-Linked and In Vivo Functional Genetic Data to Identify New Genotype-Phenotype Associations
por: Mosley, Jonathan D., et al.
Publicado: (2014) -
Mechanistic Phenotypes: An Aggregative Phenotyping Strategy to Identify Disease Mechanisms Using GWAS Data
por: Mosley, Jonathan D., et al.
Publicado: (2013) -
Genetic and clinical determinants of telomere length
por: Allaire, Patrick, et al.
Publicado: (2023)