Cargando…
Pooling across cells to normalize single-cell RNA sequencing data with many zero counts
Normalization of single-cell RNA sequencing data is necessary to eliminate cell-specific biases prior to downstream analyses. However, this is not straightforward for noisy single-cell data where many counts are zero. We present a novel approach where expression values are summed across pools of cel...
Autores principales: | L. Lun, Aaron T., Bach, Karsten, Marioni, John C. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2016
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4848819/ https://www.ncbi.nlm.nih.gov/pubmed/27122128 http://dx.doi.org/10.1186/s13059-016-0947-7 |
Ejemplares similares
-
EmptyDrops: distinguishing cells from empty droplets in droplet-based single-cell RNA sequencing data
por: Lun, Aaron T. L., et al.
Publicado: (2019) -
Quantile normalization of single-cell RNA-seq read counts without unique molecular identifiers
por: Townes, F. William, et al.
Publicado: (2020) -
UMI-count modeling and differential expression analysis for single-cell RNA sequencing
por: Chen, Wenan, et al.
Publicado: (2018) -
Genotype-free demultiplexing of pooled single-cell RNA-seq
por: Xu, Jun, et al.
Publicado: (2019) -
From single-cell to cell-pool transcriptomes: Stochasticity in gene expression and RNA splicing
por: Marinov, Georgi K., et al.
Publicado: (2014)