Cargando…
Active learning for ontological event extraction incorporating named entity recognition and unknown word handling
BACKGROUND: Biomedical text mining may target various kinds of valuable information embedded in the literature, but a critical obstacle to the extension of the mining targets is the cost of manual construction of labeled data, which are required for state-of-the-art supervised learning systems. Acti...
Autores principales: | Han, Xu, Kim, Jung-jae, Kwoh, Chee Keong |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2016
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4849099/ https://www.ncbi.nlm.nih.gov/pubmed/27127603 http://dx.doi.org/10.1186/s13326-016-0059-z |
Ejemplares similares
-
Incorporating domain knowledge in chemical and biomedical named entity recognition with word representations
por: Munkhdalai, Tsendsuren, et al.
Publicado: (2015) -
Evaluating Word Representation Features in Biomedical Named Entity Recognition Tasks
por: Tang, Buzhou, et al.
Publicado: (2014) -
Deep learning with word embeddings improves biomedical named entity recognition
por: Habibi, Maryam, et al.
Publicado: (2017) -
Comparing general and specialized word embeddings for biomedical named entity recognition
por: Ramos-Vargas, Rigo E., et al.
Publicado: (2021) -
Incorporating rich background knowledge for gene named entity classification and recognition
por: Li, Yanpeng, et al.
Publicado: (2009)