Cargando…

Spatial Non-Cyclic Geometric Phase in Neutron Interferometry

We present a split-beam neutron interferometric experiment to test the non-cyclic geometric phase tied to the spatial evolution of the system: the subjacent two-dimensional Hilbert space is spanned by the two possible paths in the interferometer and the evolution of the state is controlled by phase...

Descripción completa

Detalles Bibliográficos
Autores principales: Filipp, Stefan, Hasegawa, Yuji, Loidl, Rudolf, Rauch, Helmut
Formato: Online Artículo Texto
Lenguaje:English
Publicado: [Gaithersburg, MD] : U.S. Dept. of Commerce, National Institute of Standards and Technology 2005
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4849588/
https://www.ncbi.nlm.nih.gov/pubmed/27308131
Descripción
Sumario:We present a split-beam neutron interferometric experiment to test the non-cyclic geometric phase tied to the spatial evolution of the system: the subjacent two-dimensional Hilbert space is spanned by the two possible paths in the interferometer and the evolution of the state is controlled by phase shifters and absorbers. A related experiment was reported previously by some of the authors to verify the cyclic spatial geometric phase. The interpretation of this experiment, namely to ascribe a geometric phase to this particular state evolution, has met severe criticism. The extension to non-cyclic evolution manifests the correctness of the interpretation of the previous experiment by means of an explicit calculation of the non-cyclic geometric phase in terms of paths on the Bloch-sphere. The theoretical treatment comprises the cyclic geometric phase as a special case, which is confirmed by experiment.