Cargando…
DNA Metabolism in Balance: Rapid Loss of a RecA-Based Hyperrec Phenotype
The RecA recombinase of Escherichia coli has not evolved to optimally promote DNA pairing and strand exchange, the key processes of recombinational DNA repair. Instead, the recombinase function of RecA protein represents an evolutionary compromise between necessary levels of recombinational DNA repa...
Autores principales: | , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2016
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4849656/ https://www.ncbi.nlm.nih.gov/pubmed/27124470 http://dx.doi.org/10.1371/journal.pone.0154137 |
_version_ | 1782429571652517888 |
---|---|
author | Bakhlanova, Irina V. Dudkina, Alexandra V. Wood, Elizabeth A. Lanzov, Vladislav A. Cox, Michael M. Baitin, Dmitry M. |
author_facet | Bakhlanova, Irina V. Dudkina, Alexandra V. Wood, Elizabeth A. Lanzov, Vladislav A. Cox, Michael M. Baitin, Dmitry M. |
author_sort | Bakhlanova, Irina V. |
collection | PubMed |
description | The RecA recombinase of Escherichia coli has not evolved to optimally promote DNA pairing and strand exchange, the key processes of recombinational DNA repair. Instead, the recombinase function of RecA protein represents an evolutionary compromise between necessary levels of recombinational DNA repair and the potentially deleterious consequences of RecA functionality. A RecA variant, RecA D112R, promotes conjugational recombination at substantially enhanced levels. However, expression of the D112R RecA protein in E. coli results in a reduction in cell growth rates. This report documents the consequences of the substantial selective pressure associated with the RecA-mediated hyperrec phenotype. With continuous growth, the deleterious effects of RecA D112R, along with the observed enhancements in conjugational recombination, are lost over the course of 70 cell generations. The suppression reflects a decline in RecA D112R expression, associated primarily with a deletion in the gene promoter or chromosomal mutations that decrease plasmid copy number. The deleterious effects of RecA D112R on cell growth can also be negated by over-expression of the RecX protein from Neisseria gonorrhoeae. The effects of the RecX proteins in vivo parallel the effects of the same proteins on RecA D112R filaments in vitro. The results indicate that the toxicity of RecA D112R is due to its persistent binding to duplex genomic DNA, creating barriers for other processes in DNA metabolism. A substantial selective pressure is generated to suppress the resulting barrier to growth. |
format | Online Article Text |
id | pubmed-4849656 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2016 |
publisher | Public Library of Science |
record_format | MEDLINE/PubMed |
spelling | pubmed-48496562016-05-07 DNA Metabolism in Balance: Rapid Loss of a RecA-Based Hyperrec Phenotype Bakhlanova, Irina V. Dudkina, Alexandra V. Wood, Elizabeth A. Lanzov, Vladislav A. Cox, Michael M. Baitin, Dmitry M. PLoS One Research Article The RecA recombinase of Escherichia coli has not evolved to optimally promote DNA pairing and strand exchange, the key processes of recombinational DNA repair. Instead, the recombinase function of RecA protein represents an evolutionary compromise between necessary levels of recombinational DNA repair and the potentially deleterious consequences of RecA functionality. A RecA variant, RecA D112R, promotes conjugational recombination at substantially enhanced levels. However, expression of the D112R RecA protein in E. coli results in a reduction in cell growth rates. This report documents the consequences of the substantial selective pressure associated with the RecA-mediated hyperrec phenotype. With continuous growth, the deleterious effects of RecA D112R, along with the observed enhancements in conjugational recombination, are lost over the course of 70 cell generations. The suppression reflects a decline in RecA D112R expression, associated primarily with a deletion in the gene promoter or chromosomal mutations that decrease plasmid copy number. The deleterious effects of RecA D112R on cell growth can also be negated by over-expression of the RecX protein from Neisseria gonorrhoeae. The effects of the RecX proteins in vivo parallel the effects of the same proteins on RecA D112R filaments in vitro. The results indicate that the toxicity of RecA D112R is due to its persistent binding to duplex genomic DNA, creating barriers for other processes in DNA metabolism. A substantial selective pressure is generated to suppress the resulting barrier to growth. Public Library of Science 2016-04-28 /pmc/articles/PMC4849656/ /pubmed/27124470 http://dx.doi.org/10.1371/journal.pone.0154137 Text en © 2016 Bakhlanova et al http://creativecommons.org/licenses/by/4.0/ This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0/) , which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. |
spellingShingle | Research Article Bakhlanova, Irina V. Dudkina, Alexandra V. Wood, Elizabeth A. Lanzov, Vladislav A. Cox, Michael M. Baitin, Dmitry M. DNA Metabolism in Balance: Rapid Loss of a RecA-Based Hyperrec Phenotype |
title | DNA Metabolism in Balance: Rapid Loss of a RecA-Based Hyperrec Phenotype |
title_full | DNA Metabolism in Balance: Rapid Loss of a RecA-Based Hyperrec Phenotype |
title_fullStr | DNA Metabolism in Balance: Rapid Loss of a RecA-Based Hyperrec Phenotype |
title_full_unstemmed | DNA Metabolism in Balance: Rapid Loss of a RecA-Based Hyperrec Phenotype |
title_short | DNA Metabolism in Balance: Rapid Loss of a RecA-Based Hyperrec Phenotype |
title_sort | dna metabolism in balance: rapid loss of a reca-based hyperrec phenotype |
topic | Research Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4849656/ https://www.ncbi.nlm.nih.gov/pubmed/27124470 http://dx.doi.org/10.1371/journal.pone.0154137 |
work_keys_str_mv | AT bakhlanovairinav dnametabolisminbalancerapidlossofarecabasedhyperrecphenotype AT dudkinaalexandrav dnametabolisminbalancerapidlossofarecabasedhyperrecphenotype AT woodelizabetha dnametabolisminbalancerapidlossofarecabasedhyperrecphenotype AT lanzovvladislava dnametabolisminbalancerapidlossofarecabasedhyperrecphenotype AT coxmichaelm dnametabolisminbalancerapidlossofarecabasedhyperrecphenotype AT baitindmitrym dnametabolisminbalancerapidlossofarecabasedhyperrecphenotype |