Cargando…
Lagrange Interpolation Learning Particle Swarm Optimization
In recent years, comprehensive learning particle swarm optimization (CLPSO) has attracted the attention of many scholars for using in solving multimodal problems, as it is excellent in preserving the particles’ diversity and thus preventing premature convergence. However, CLPSO exhibits low solution...
Autores principales: | Kai, Zhang, Jinchun, Song, Ke, Ni, Song, Li |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2016
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4849747/ https://www.ncbi.nlm.nih.gov/pubmed/27123982 http://dx.doi.org/10.1371/journal.pone.0154191 |
Ejemplares similares
-
Trivariate Local Lagrange Interpolation and Macro Elements of Arbitrary Smoothness
por: Matt, Michael Andreas
Publicado: (2012) -
Creating Digital Watermarks in Bitmap Images Using Lagrange Interpolation and Bezier Curves
por: Yerimbetova, Aigerim, et al.
Publicado: (2023) -
Lagrange-NG: The next generation of Lagrange
por: Bettisworth, Ben, et al.
Publicado: (2023) -
A WSN Layer-Cluster Key Management Scheme Based on Quadratic Polynomial and Lagrange Interpolation Polynomial
por: Wang, Xiaogang, et al.
Publicado: (2020) -
Particle Swarm Optimization with Double Learning Patterns
por: Shen, Yuanxia, et al.
Publicado: (2016)