Cargando…
Inferring Intra-Community Microbial Interaction Patterns from Metagenomic Datasets Using Associative Rule Mining Techniques
The nature of inter-microbial metabolic interactions defines the stability of microbial communities residing in any ecological niche. Deciphering these interaction patterns is crucial for understanding the mode/mechanism(s) through which an individual microbial community transitions from one state t...
Autores principales: | Tandon, Disha, Haque, Mohammed Monzoorul, Mande, Sharmila S. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2016
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4849775/ https://www.ncbi.nlm.nih.gov/pubmed/27124399 http://dx.doi.org/10.1371/journal.pone.0154493 |
Ejemplares similares
-
Vikodak - A Modular Framework for Inferring Functional Potential of Microbial Communities from 16S Metagenomic Datasets
por: Nagpal, Sunil, et al.
Publicado: (2016) -
COGNIZER: A Framework for Functional Annotation of Metagenomic Datasets
por: Bose, Tungadri, et al.
Publicado: (2015) -
iVikodak—A Platform and Standard Workflow for Inferring, Analyzing, Comparing, and Visualizing the Functional Potential of Microbial Communities
por: Nagpal, Sunil, et al.
Publicado: (2019) -
Lifestyle-Induced Microbial Gradients: An Indian Perspective
por: Singh, Rashmi, et al.
Publicado: (2019) -
DiScRIBinATE: a rapid method for accurate taxonomic classification of metagenomic sequences
por: Ghosh, Tarini Shankar, et al.
Publicado: (2010)