Cargando…

Multipolar interference for non-reciprocal nonlinear generation

We show that nonlinear multipolar interference allows achieving not only unidirectional, but also non-reciprocal nonlinear generation from a nanoelement, with the direction of the produced light decoupled from the direction of at least one of the excitation beams. Alternatively, it may allow inhibit...

Descripción completa

Detalles Bibliográficos
Autores principales: Poutrina, Ekaterina, Urbas, Augustine
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Nature Publishing Group 2016
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4850388/
https://www.ncbi.nlm.nih.gov/pubmed/27126209
http://dx.doi.org/10.1038/srep25113
Descripción
Sumario:We show that nonlinear multipolar interference allows achieving not only unidirectional, but also non-reciprocal nonlinear generation from a nanoelement, with the direction of the produced light decoupled from the direction of at least one of the excitation beams. Alternatively, it may allow inhibiting the specified nonlinear response in a nanoelement or in its periodic arrangement by reversing the direction of one of the pumps. These general phenomena exploit the fact that, contrary to the linear response case, nonlinear magneto-electric interference stems from a combination of additive and multiplicative processes and includes an interference between various terms within the electric and magnetic partial waves themselves. We demonstrate the introduced concept numerically using an example of a plasmonic dimer geometry with realistic material parameters.