Cargando…

Coherence loss of partially mode-locked fibre laser

Stochastically driven nonlinear processes limit the number of amplified modes in a natural system due to competitive mode interaction, which is accompanied by loss of coherence when increasing the complexity of the system. Specifically, we find that modulation instability, which exhibits great fluct...

Descripción completa

Detalles Bibliográficos
Autores principales: Gao, Lei, Zhu, Tao, Wabnitz, Stefan, Liu, Min, Huang, Wei
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Nature Publishing Group 2016
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4850403/
https://www.ncbi.nlm.nih.gov/pubmed/27126325
http://dx.doi.org/10.1038/srep24995
Descripción
Sumario:Stochastically driven nonlinear processes limit the number of amplified modes in a natural system due to competitive mode interaction, which is accompanied by loss of coherence when increasing the complexity of the system. Specifically, we find that modulation instability, which exhibits great fluctuations when it spontaneously grows from noise in conservative systems, may possess a high degree of coherence in dissipative laser system with gain. Nonlinear mode interactions can be competitive or cooperative: adjusting the intracavity polarization state controls the process of loss of coherence. Single-shot spectra reveal that, first, the fibre laser redistributes its energy from the center wavelength mode into sidebands through parametric instabilities. Subsequently, longitudinal modes are populated via cascaded four-wave-mixing. Parametric frequency conversion populates longitudinal modes with a random distribution of position, intensity and polarization, resulting in partially (rather than highly) coherent pulses. These dynamics unveil a new route towards complex pattern formation in nonlinear laser systems, and they may be also beneficial for the understanding of supercontinuum, Kerr-combs phenomena, and optical rogue waves.