Cargando…
Electrolyte-Mediated Assembly of Charged Nanoparticles
[Image: see text] Solutions at high salt concentrations are used to crystallize or segregate charged colloids, including proteins and polyelectrolytes via a complex mechanism referred to as “salting-out”. Here, we combine small-angle X-ray scattering (SAXS), molecular dynamics (MD) simulations, and...
Autores principales: | , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
American Chemical Society
2016
|
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4850508/ https://www.ncbi.nlm.nih.gov/pubmed/27163052 http://dx.doi.org/10.1021/acscentsci.6b00023 |
Sumario: | [Image: see text] Solutions at high salt concentrations are used to crystallize or segregate charged colloids, including proteins and polyelectrolytes via a complex mechanism referred to as “salting-out”. Here, we combine small-angle X-ray scattering (SAXS), molecular dynamics (MD) simulations, and liquid-state theory to show that salting-out is a long-range interaction, which is controlled by electrolyte concentration and colloid charge density. As a model system, we analyze Au nanoparticles coated with noncomplementary DNA designed to prevent interparticle assembly via Watson–Crick hybridization. SAXS shows that these highly charged nanoparticles undergo “gas” to face-centered cubic (FCC) to “glass-like” transitions with increasing NaCl or CaCl(2) concentration. MD simulations reveal that the crystallization is concomitant with interparticle interactions changing from purely repulsive to a “long-range potential well” condition. Liquid-state theory explains this attraction as a sum of cohesive and depletion forces that originate from the interelectrolyte ion and electrolyte–ion–nanoparticle positional correlations. Our work provides fundamental insights into the effect of ionic correlations in the salting-out mechanism and suggests new routes for the crystallization of colloids and proteins using concentrated salts. |
---|