Cargando…
Optimized Sharable-Slot Allocation Using Multiple Channels to Reduce Data-Gathering Delay in Wireless Sensor Networks
The demand for event-driven real-time applications for timely and reliable data acquisition is growing in industrial sectors. However, it is challenging to satisfy the requirements since constraints such as limited available energy and bandwidth are inherent in a wireless sensor network. To deal wit...
Autores principales: | , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2016
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4851019/ https://www.ncbi.nlm.nih.gov/pubmed/27070619 http://dx.doi.org/10.3390/s16040505 |
_version_ | 1782429758036901888 |
---|---|
author | Van Vinh, Phan Oh, Hoon |
author_facet | Van Vinh, Phan Oh, Hoon |
author_sort | Van Vinh, Phan |
collection | PubMed |
description | The demand for event-driven real-time applications for timely and reliable data acquisition is growing in industrial sectors. However, it is challenging to satisfy the requirements since constraints such as limited available energy and bandwidth are inherent in a wireless sensor network. To deal with timely delivery, one desirable approach is to improve network throughput so that more real-time applications with tighter time constraints can be satisfied in any given network. To deal with reliable delivery, the use of a carrier sense multiple access mechanism for data transmission is preferred, along with the use of a sharable slot within which multiple nodes compete to send data. Thus, we present a method of using multiple channels and a way to optimize the size of the sharable slot. The proposed channel-slot–scheduling algorithm tries to optimize the size of a sharable slot when multiple channels are used. The algorithm also deals with situations where nodes generate multiple data packets in each round of a data-gathering period. It is shown through simulation that our approach greatly outperforms others on some selected metrics. |
format | Online Article Text |
id | pubmed-4851019 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2016 |
publisher | MDPI |
record_format | MEDLINE/PubMed |
spelling | pubmed-48510192016-05-04 Optimized Sharable-Slot Allocation Using Multiple Channels to Reduce Data-Gathering Delay in Wireless Sensor Networks Van Vinh, Phan Oh, Hoon Sensors (Basel) Article The demand for event-driven real-time applications for timely and reliable data acquisition is growing in industrial sectors. However, it is challenging to satisfy the requirements since constraints such as limited available energy and bandwidth are inherent in a wireless sensor network. To deal with timely delivery, one desirable approach is to improve network throughput so that more real-time applications with tighter time constraints can be satisfied in any given network. To deal with reliable delivery, the use of a carrier sense multiple access mechanism for data transmission is preferred, along with the use of a sharable slot within which multiple nodes compete to send data. Thus, we present a method of using multiple channels and a way to optimize the size of the sharable slot. The proposed channel-slot–scheduling algorithm tries to optimize the size of a sharable slot when multiple channels are used. The algorithm also deals with situations where nodes generate multiple data packets in each round of a data-gathering period. It is shown through simulation that our approach greatly outperforms others on some selected metrics. MDPI 2016-04-09 /pmc/articles/PMC4851019/ /pubmed/27070619 http://dx.doi.org/10.3390/s16040505 Text en © 2016 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons by Attribution (CC-BY) license (http://creativecommons.org/licenses/by/4.0/). |
spellingShingle | Article Van Vinh, Phan Oh, Hoon Optimized Sharable-Slot Allocation Using Multiple Channels to Reduce Data-Gathering Delay in Wireless Sensor Networks |
title | Optimized Sharable-Slot Allocation Using Multiple Channels to Reduce Data-Gathering Delay in Wireless Sensor Networks |
title_full | Optimized Sharable-Slot Allocation Using Multiple Channels to Reduce Data-Gathering Delay in Wireless Sensor Networks |
title_fullStr | Optimized Sharable-Slot Allocation Using Multiple Channels to Reduce Data-Gathering Delay in Wireless Sensor Networks |
title_full_unstemmed | Optimized Sharable-Slot Allocation Using Multiple Channels to Reduce Data-Gathering Delay in Wireless Sensor Networks |
title_short | Optimized Sharable-Slot Allocation Using Multiple Channels to Reduce Data-Gathering Delay in Wireless Sensor Networks |
title_sort | optimized sharable-slot allocation using multiple channels to reduce data-gathering delay in wireless sensor networks |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4851019/ https://www.ncbi.nlm.nih.gov/pubmed/27070619 http://dx.doi.org/10.3390/s16040505 |
work_keys_str_mv | AT vanvinhphan optimizedsharableslotallocationusingmultiplechannelstoreducedatagatheringdelayinwirelesssensornetworks AT ohhoon optimizedsharableslotallocationusingmultiplechannelstoreducedatagatheringdelayinwirelesssensornetworks |