Cargando…
Enhancing Electronic Nose Performance Based on a Novel QPSO-KELM Model
A novel multi-class classification method for bacteria detection termed quantum-behaved particle swarm optimization-based kernel extreme learning machine (QPSO-KELM) based on an electronic nose (E-nose) technology is proposed in this paper. Time and frequency domain features are extracted from E-nos...
Autores principales: | Peng, Chao, Yan, Jia, Duan, Shukai, Wang, Lidan, Jia, Pengfei, Zhang, Songlin |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2016
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4851034/ https://www.ncbi.nlm.nih.gov/pubmed/27077860 http://dx.doi.org/10.3390/s16040520 |
Ejemplares similares
-
A Novel Feature Extraction Approach Using Window Function Capturing and QPSO-SVM for Enhancing Electronic Nose Performance
por: Guo, Xiuzhen, et al.
Publicado: (2015) -
Electronic Nose Feature Extraction Methods: A Review
por: Yan, Jia, et al.
Publicado: (2015) -
A Novel Optimization Technique to Improve Gas Recognition by Electronic Noses Based on the Enhanced Krill Herd Algorithm
por: Wang, Li, et al.
Publicado: (2016) -
A Novel Semi-Supervised Electronic Nose Learning Technique: M-Training
por: Jia, Pengfei, et al.
Publicado: (2016) -
Feature Extraction of Electronic Nose Signals Using QPSO-Based Multiple KFDA Signal Processing
por: Wen, Tailai, et al.
Publicado: (2018)