Cargando…
Unsupervised Event Characterization and Detection in Multichannel Signals: An EEG application
In this paper, we propose a new unsupervised method to automatically characterize and detect events in multichannel signals. This method is used to identify artifacts in electroencephalogram (EEG) recordings of brain activity. The proposed algorithm has been evaluated and compared with a supervised...
Autores principales: | Mur, Angel, Dormido, Raquel, Vega, Jesús, Duro, Natividad, Dormido-Canto, Sebastian |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2016
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4851103/ https://www.ncbi.nlm.nih.gov/pubmed/27120605 http://dx.doi.org/10.3390/s16040590 |
Ejemplares similares
-
An Unsupervised Method for Artefact Removal in EEG Signals
por: Mur, Angel, et al.
Publicado: (2019) -
An Interactive Tool for Outdoor Computer Controlled Cultivation of Microalgae in a Tubular Photobioreactor System
por: Dormido, Raquel, et al.
Publicado: (2014) -
One-Time URL: A Proximity Security Mechanism between Internet of Things and Mobile Devices
por: Solano, Antonio, et al.
Publicado: (2016) -
tiReaction Diffusion Voronoi Diagrams: From Sensors Data to Computing
por: Vázquez-Otero, Alejandro, et al.
Publicado: (2015) -
A Self-Provisioning Mechanism in OpenStack for IoT Devices
por: Solano, Antonio, et al.
Publicado: (2016)