Cargando…
Computational neurorehabilitation: modeling plasticity and learning to predict recovery
Despite progress in using computational approaches to inform medicine and neuroscience in the last 30 years, there have been few attempts to model the mechanisms underlying sensorimotor rehabilitation. We argue that a fundamental understanding of neurologic recovery, and as a result accurate predict...
Autores principales: | Reinkensmeyer, David J., Burdet, Etienne, Casadio, Maura, Krakauer, John W., Kwakkel, Gert, Lang, Catherine E., Swinnen, Stephan P., Ward, Nick S., Schweighofer, Nicolas |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2016
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4851823/ https://www.ncbi.nlm.nih.gov/pubmed/27130577 http://dx.doi.org/10.1186/s12984-016-0148-3 |
Ejemplares similares
-
Robotic neurorehabilitation: a computational motor learning perspective
por: Huang, Vincent S, et al.
Publicado: (2009) -
Neurorehabilitation: Neural Plasticity and Functional Recovery
por: Fujiwara, Toshiyuki, et al.
Publicado: (2017) -
Neurorehabilitation: Neural Plasticity and Functional Recovery 2018
por: Fujiwara, Toshiyuki, et al.
Publicado: (2019) -
Dissociating motor learning from recovery in exoskeleton training post-stroke
por: Schweighofer, Nicolas, et al.
Publicado: (2018) -
Correction to: Dissociating motor learning from recovery in exoskeleton training post-stroke
por: Schweighofer, Nicolas, et al.
Publicado: (2018)