Cargando…

Intracerebroventricular injections of dronabinol, a cannabinoid receptor agonist, does not attenuate serotonin-induced apnea in Sprague-Dawley rats

BACKGROUND: Evidence suggests that vagal nerve activity may play a role in sleep apnea induction. In anesthetized rats, dronabinol, a cannabinoid (CB) receptor agonist, injected into the nodose ganglia attenuates reflex apnea and increases genioglossus activity, and reflex apnea attenuation is block...

Descripción completa

Detalles Bibliográficos
Autores principales: Calik, Michael W., Carley, David W.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: BioMed Central 2016
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4852437/
https://www.ncbi.nlm.nih.gov/pubmed/27133202
http://dx.doi.org/10.1186/s12952-016-0052-1
_version_ 1782429940545748992
author Calik, Michael W.
Carley, David W.
author_facet Calik, Michael W.
Carley, David W.
author_sort Calik, Michael W.
collection PubMed
description BACKGROUND: Evidence suggests that vagal nerve activity may play a role in sleep apnea induction. In anesthetized rats, dronabinol, a cannabinoid (CB) receptor agonist, injected into the nodose ganglia attenuates reflex apnea and increases genioglossus activity, and reflex apnea attenuation is blocked by systemic pre-treatment with cannabinoid type 1 and/or type 2 receptor antagonists. However, it is unclear whether dronabinol has similar effects in the central nervous system; CB receptors are widely distributed in the brain, especially on neuronal circuitry important for respiration and upper airway activation. Here, we examine the effects of intracerebroventricular (ICV) injection of dronabinol on serotonin (5-HT)-induced apnea. METHODS: Adult male Sprague-Dawley rats were anesthetized and instrumented with bilateral electrodes to monitor genioglossi EMG and with a piezoelectric strain gauge to monitor respiratory pattern. Serotonin was intravenously infused into a femoral vein to induce reflex apnea. After baseline recordings, rats were placed in a stereotaxic apparatus. A unilateral osteotomy was made to allow access for injection to the right lateral ventricle, and the dura were carefully removed. Dronabinol (100, 10, 1, or 0.1 μg/3 μl DMSO) or control (3 μl DMSO) was injected into the right lateral ventricle and 5-HT infusion was repeated. Data (mean ± SEM) were analyzed using a mixed model analysis with a repeated/fixed measure. RESULTS: There was no main effect in 5-HT-induced apnea or breath duration, or in breath instability, between ICV dronabinol injected and ICV vehicle control injected groups. Moreover, there was no main effect in phasic or tonic genioglossus activity between ICV dronabinol injected and ICV vehicle control injected groups. CONCLUSION: Our data show that ICV injection of dronabinol did not decrease 5-HT-induced apneas, and did not increase genioglossus activity. This in contrast to published results of dronabinol’s effect on apnea via the vagus nerve. Our results suggest that the effects of dronabinol on reflex apneas are peripherally mediated via suppression of vagal nerve activity.
format Online
Article
Text
id pubmed-4852437
institution National Center for Biotechnology Information
language English
publishDate 2016
publisher BioMed Central
record_format MEDLINE/PubMed
spelling pubmed-48524372016-05-03 Intracerebroventricular injections of dronabinol, a cannabinoid receptor agonist, does not attenuate serotonin-induced apnea in Sprague-Dawley rats Calik, Michael W. Carley, David W. J Negat Results Biomed Brief Report BACKGROUND: Evidence suggests that vagal nerve activity may play a role in sleep apnea induction. In anesthetized rats, dronabinol, a cannabinoid (CB) receptor agonist, injected into the nodose ganglia attenuates reflex apnea and increases genioglossus activity, and reflex apnea attenuation is blocked by systemic pre-treatment with cannabinoid type 1 and/or type 2 receptor antagonists. However, it is unclear whether dronabinol has similar effects in the central nervous system; CB receptors are widely distributed in the brain, especially on neuronal circuitry important for respiration and upper airway activation. Here, we examine the effects of intracerebroventricular (ICV) injection of dronabinol on serotonin (5-HT)-induced apnea. METHODS: Adult male Sprague-Dawley rats were anesthetized and instrumented with bilateral electrodes to monitor genioglossi EMG and with a piezoelectric strain gauge to monitor respiratory pattern. Serotonin was intravenously infused into a femoral vein to induce reflex apnea. After baseline recordings, rats were placed in a stereotaxic apparatus. A unilateral osteotomy was made to allow access for injection to the right lateral ventricle, and the dura were carefully removed. Dronabinol (100, 10, 1, or 0.1 μg/3 μl DMSO) or control (3 μl DMSO) was injected into the right lateral ventricle and 5-HT infusion was repeated. Data (mean ± SEM) were analyzed using a mixed model analysis with a repeated/fixed measure. RESULTS: There was no main effect in 5-HT-induced apnea or breath duration, or in breath instability, between ICV dronabinol injected and ICV vehicle control injected groups. Moreover, there was no main effect in phasic or tonic genioglossus activity between ICV dronabinol injected and ICV vehicle control injected groups. CONCLUSION: Our data show that ICV injection of dronabinol did not decrease 5-HT-induced apneas, and did not increase genioglossus activity. This in contrast to published results of dronabinol’s effect on apnea via the vagus nerve. Our results suggest that the effects of dronabinol on reflex apneas are peripherally mediated via suppression of vagal nerve activity. BioMed Central 2016-05-02 /pmc/articles/PMC4852437/ /pubmed/27133202 http://dx.doi.org/10.1186/s12952-016-0052-1 Text en © Calik and Carley. 2016 Open AccessThis article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated.
spellingShingle Brief Report
Calik, Michael W.
Carley, David W.
Intracerebroventricular injections of dronabinol, a cannabinoid receptor agonist, does not attenuate serotonin-induced apnea in Sprague-Dawley rats
title Intracerebroventricular injections of dronabinol, a cannabinoid receptor agonist, does not attenuate serotonin-induced apnea in Sprague-Dawley rats
title_full Intracerebroventricular injections of dronabinol, a cannabinoid receptor agonist, does not attenuate serotonin-induced apnea in Sprague-Dawley rats
title_fullStr Intracerebroventricular injections of dronabinol, a cannabinoid receptor agonist, does not attenuate serotonin-induced apnea in Sprague-Dawley rats
title_full_unstemmed Intracerebroventricular injections of dronabinol, a cannabinoid receptor agonist, does not attenuate serotonin-induced apnea in Sprague-Dawley rats
title_short Intracerebroventricular injections of dronabinol, a cannabinoid receptor agonist, does not attenuate serotonin-induced apnea in Sprague-Dawley rats
title_sort intracerebroventricular injections of dronabinol, a cannabinoid receptor agonist, does not attenuate serotonin-induced apnea in sprague-dawley rats
topic Brief Report
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4852437/
https://www.ncbi.nlm.nih.gov/pubmed/27133202
http://dx.doi.org/10.1186/s12952-016-0052-1
work_keys_str_mv AT calikmichaelw intracerebroventricularinjectionsofdronabinolacannabinoidreceptoragonistdoesnotattenuateserotonininducedapneainspraguedawleyrats
AT carleydavidw intracerebroventricularinjectionsofdronabinolacannabinoidreceptoragonistdoesnotattenuateserotonininducedapneainspraguedawleyrats