Cargando…

Resolvin D1 Protects Lipopolysaccharide-induced Acute Kidney Injury by Down-regulating Nuclear Factor-kappa B Signal and Inhibiting Apoptosis

BACKGROUND: Resolvin D1 (RvD1) is a newly found anti-inflammatory bioactive compound derived from polyunsaturated fatty acids. The current study aimed to explore the protective effect of RvD1 on lipopolysaccharide (LPS)-induced acute kidney injury (AKI) and its possible mechanism. METHODS: Both in v...

Descripción completa

Detalles Bibliográficos
Autores principales: Zhao, Yu-Liang, Zhang, Ling, Yang, Ying-Ying, Tang, Yi, Zhou, Jiao-Jiao, Feng, Yu-Ying, Cui, Tian-Lei, Liu, Fang, Fu, Ping
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Medknow Publications & Media Pvt Ltd 2016
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4852679/
https://www.ncbi.nlm.nih.gov/pubmed/27098797
http://dx.doi.org/10.4103/0366-6999.180517
_version_ 1782429982030561280
author Zhao, Yu-Liang
Zhang, Ling
Yang, Ying-Ying
Tang, Yi
Zhou, Jiao-Jiao
Feng, Yu-Ying
Cui, Tian-Lei
Liu, Fang
Fu, Ping
author_facet Zhao, Yu-Liang
Zhang, Ling
Yang, Ying-Ying
Tang, Yi
Zhou, Jiao-Jiao
Feng, Yu-Ying
Cui, Tian-Lei
Liu, Fang
Fu, Ping
author_sort Zhao, Yu-Liang
collection PubMed
description BACKGROUND: Resolvin D1 (RvD1) is a newly found anti-inflammatory bioactive compound derived from polyunsaturated fatty acids. The current study aimed to explore the protective effect of RvD1 on lipopolysaccharide (LPS)-induced acute kidney injury (AKI) and its possible mechanism. METHODS: Both in vivo and in vitro studies were conducted. Male BALB/c mice were randomly divided into control group (saline), LPS group (LPS 5 mg/kg), RvD1 group (RvD1 5 μg/kg + LPS 5 mg/kg), and blockage group (Boc-MLP 5 μg/kg + RvD1 5 μg/kg + LPS 5 mg/kg). Boc-MLP is a RvD1 receptor blocker. The mice were intraperitoneally injected with these drugs and recorded for general condition for 48 h, while the blood and kidneys were harvested at 2, 6, 12, 24, and 48 h time points, respectively (n = 6 in each group at each time point). Human proximal tubule epithelial cells (HK-2) were randomly divided into control group (medium only), LPS group (LPS 5 μg/ml), RvD1 group (RvD1 10 ng/ml + LPS 5 μg/ml), and blockage group (Boc-MLP 10 ng/ml + RvD1 10 ng/ml + LPS 5 μg/ml). The cells were harvested for RNA at 2, 4, 6, 12, and 24 h time points, respectively (n = 6 in each group at each time point). Blood creatinine was tested by using an Abbott i-STAT portable blood gas analyzer. Tumor necrosis factor-α (TNF-α) level was detected by ELISA. Kidney pathology was observed under hematoxylin and eosin (HE) staining and transmission electron microscope (TEM). We hired immune-histological staining, Western blotting, and fluorescence quantitative polymerase chain reaction to detect the expression of RvD1 receptor ALX, nuclear factor-kappa B (NF-κB) signaling pathway as well as caspase-3. Kidney apoptosis was evaluated by TUNEL staining. RESULTS: RvD1 receptor ALX was detected on renal tubular epithelials. Kaplan–Meier analysis indicated that RvD1 improved 48 h animal survival (80%) compared with LPS group (40%) and RvD1 blockage group (60%), while RvD1 also ameliorated kidney pathological injury in HE staining and TEM scan. After LPS stimulation, the mRNA expression of toll-like receptor 4, myeloid differentiation factor 88, and TNF-α in both mice kidneys and HK-2 cells were all up-regulated, while RvD1 substantially inhibited the up-regulation of these genes. Western blotting showed that the phosphorylated-IκB/IκB ratio in LPS group was significantly higher than that in the control group, which was inhibited in the RvD1 group. RvD1 could inhibit the up-regulation of cleaved-caspase-3 protein stimulated by LPS, which was prohibited in RvD1 blockage group. RvD1 group also had a lower proportion of apoptotic nuclei in mice kidney by TUNEL staining compared with LPS group. CONCLUSION: In LPS-induced AKI, RvD1 could decrease TNF-α level, ameliorate kidney pathological injury, protect kidney function, and improve animal survival by down-regulating NF-κB inflammatory signal as well as inhibiting renal cell apoptosis.
format Online
Article
Text
id pubmed-4852679
institution National Center for Biotechnology Information
language English
publishDate 2016
publisher Medknow Publications & Media Pvt Ltd
record_format MEDLINE/PubMed
spelling pubmed-48526792016-05-10 Resolvin D1 Protects Lipopolysaccharide-induced Acute Kidney Injury by Down-regulating Nuclear Factor-kappa B Signal and Inhibiting Apoptosis Zhao, Yu-Liang Zhang, Ling Yang, Ying-Ying Tang, Yi Zhou, Jiao-Jiao Feng, Yu-Ying Cui, Tian-Lei Liu, Fang Fu, Ping Chin Med J (Engl) Original Article BACKGROUND: Resolvin D1 (RvD1) is a newly found anti-inflammatory bioactive compound derived from polyunsaturated fatty acids. The current study aimed to explore the protective effect of RvD1 on lipopolysaccharide (LPS)-induced acute kidney injury (AKI) and its possible mechanism. METHODS: Both in vivo and in vitro studies were conducted. Male BALB/c mice were randomly divided into control group (saline), LPS group (LPS 5 mg/kg), RvD1 group (RvD1 5 μg/kg + LPS 5 mg/kg), and blockage group (Boc-MLP 5 μg/kg + RvD1 5 μg/kg + LPS 5 mg/kg). Boc-MLP is a RvD1 receptor blocker. The mice were intraperitoneally injected with these drugs and recorded for general condition for 48 h, while the blood and kidneys were harvested at 2, 6, 12, 24, and 48 h time points, respectively (n = 6 in each group at each time point). Human proximal tubule epithelial cells (HK-2) were randomly divided into control group (medium only), LPS group (LPS 5 μg/ml), RvD1 group (RvD1 10 ng/ml + LPS 5 μg/ml), and blockage group (Boc-MLP 10 ng/ml + RvD1 10 ng/ml + LPS 5 μg/ml). The cells were harvested for RNA at 2, 4, 6, 12, and 24 h time points, respectively (n = 6 in each group at each time point). Blood creatinine was tested by using an Abbott i-STAT portable blood gas analyzer. Tumor necrosis factor-α (TNF-α) level was detected by ELISA. Kidney pathology was observed under hematoxylin and eosin (HE) staining and transmission electron microscope (TEM). We hired immune-histological staining, Western blotting, and fluorescence quantitative polymerase chain reaction to detect the expression of RvD1 receptor ALX, nuclear factor-kappa B (NF-κB) signaling pathway as well as caspase-3. Kidney apoptosis was evaluated by TUNEL staining. RESULTS: RvD1 receptor ALX was detected on renal tubular epithelials. Kaplan–Meier analysis indicated that RvD1 improved 48 h animal survival (80%) compared with LPS group (40%) and RvD1 blockage group (60%), while RvD1 also ameliorated kidney pathological injury in HE staining and TEM scan. After LPS stimulation, the mRNA expression of toll-like receptor 4, myeloid differentiation factor 88, and TNF-α in both mice kidneys and HK-2 cells were all up-regulated, while RvD1 substantially inhibited the up-regulation of these genes. Western blotting showed that the phosphorylated-IκB/IκB ratio in LPS group was significantly higher than that in the control group, which was inhibited in the RvD1 group. RvD1 could inhibit the up-regulation of cleaved-caspase-3 protein stimulated by LPS, which was prohibited in RvD1 blockage group. RvD1 group also had a lower proportion of apoptotic nuclei in mice kidney by TUNEL staining compared with LPS group. CONCLUSION: In LPS-induced AKI, RvD1 could decrease TNF-α level, ameliorate kidney pathological injury, protect kidney function, and improve animal survival by down-regulating NF-κB inflammatory signal as well as inhibiting renal cell apoptosis. Medknow Publications & Media Pvt Ltd 2016-05-05 /pmc/articles/PMC4852679/ /pubmed/27098797 http://dx.doi.org/10.4103/0366-6999.180517 Text en Copyright: © 2016 Chinese Medical Journal http://creativecommons.org/licenses/by-nc-sa/3.0 This is an open access article distributed under the terms of the Creative Commons Attribution-NonCommercial-ShareAlike 3.0 License, which allows others to remix, tweak, and build upon the work non-commercially, as long as the author is credited and the new creations are licensed under the identical terms.
spellingShingle Original Article
Zhao, Yu-Liang
Zhang, Ling
Yang, Ying-Ying
Tang, Yi
Zhou, Jiao-Jiao
Feng, Yu-Ying
Cui, Tian-Lei
Liu, Fang
Fu, Ping
Resolvin D1 Protects Lipopolysaccharide-induced Acute Kidney Injury by Down-regulating Nuclear Factor-kappa B Signal and Inhibiting Apoptosis
title Resolvin D1 Protects Lipopolysaccharide-induced Acute Kidney Injury by Down-regulating Nuclear Factor-kappa B Signal and Inhibiting Apoptosis
title_full Resolvin D1 Protects Lipopolysaccharide-induced Acute Kidney Injury by Down-regulating Nuclear Factor-kappa B Signal and Inhibiting Apoptosis
title_fullStr Resolvin D1 Protects Lipopolysaccharide-induced Acute Kidney Injury by Down-regulating Nuclear Factor-kappa B Signal and Inhibiting Apoptosis
title_full_unstemmed Resolvin D1 Protects Lipopolysaccharide-induced Acute Kidney Injury by Down-regulating Nuclear Factor-kappa B Signal and Inhibiting Apoptosis
title_short Resolvin D1 Protects Lipopolysaccharide-induced Acute Kidney Injury by Down-regulating Nuclear Factor-kappa B Signal and Inhibiting Apoptosis
title_sort resolvin d1 protects lipopolysaccharide-induced acute kidney injury by down-regulating nuclear factor-kappa b signal and inhibiting apoptosis
topic Original Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4852679/
https://www.ncbi.nlm.nih.gov/pubmed/27098797
http://dx.doi.org/10.4103/0366-6999.180517
work_keys_str_mv AT zhaoyuliang resolvind1protectslipopolysaccharideinducedacutekidneyinjurybydownregulatingnuclearfactorkappabsignalandinhibitingapoptosis
AT zhangling resolvind1protectslipopolysaccharideinducedacutekidneyinjurybydownregulatingnuclearfactorkappabsignalandinhibitingapoptosis
AT yangyingying resolvind1protectslipopolysaccharideinducedacutekidneyinjurybydownregulatingnuclearfactorkappabsignalandinhibitingapoptosis
AT tangyi resolvind1protectslipopolysaccharideinducedacutekidneyinjurybydownregulatingnuclearfactorkappabsignalandinhibitingapoptosis
AT zhoujiaojiao resolvind1protectslipopolysaccharideinducedacutekidneyinjurybydownregulatingnuclearfactorkappabsignalandinhibitingapoptosis
AT fengyuying resolvind1protectslipopolysaccharideinducedacutekidneyinjurybydownregulatingnuclearfactorkappabsignalandinhibitingapoptosis
AT cuitianlei resolvind1protectslipopolysaccharideinducedacutekidneyinjurybydownregulatingnuclearfactorkappabsignalandinhibitingapoptosis
AT liufang resolvind1protectslipopolysaccharideinducedacutekidneyinjurybydownregulatingnuclearfactorkappabsignalandinhibitingapoptosis
AT fuping resolvind1protectslipopolysaccharideinducedacutekidneyinjurybydownregulatingnuclearfactorkappabsignalandinhibitingapoptosis