Cargando…
Defining Disease Phenotypes in Primary Care Electronic Health Records by a Machine Learning Approach: A Case Study in Identifying Rheumatoid Arthritis
OBJECTIVES: 1) To use data-driven method to examine clinical codes (risk factors) of a medical condition in primary care electronic health records (EHRs) that can accurately predict a diagnosis of the condition in secondary care EHRs. 2) To develop and validate a disease phenotyping algorithm for rh...
Autores principales: | , , , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2016
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4852928/ https://www.ncbi.nlm.nih.gov/pubmed/27135409 http://dx.doi.org/10.1371/journal.pone.0154515 |
_version_ | 1782430010383007744 |
---|---|
author | Zhou, Shang-Ming Fernandez-Gutierrez, Fabiola Kennedy, Jonathan Cooksey, Roxanne Atkinson, Mark Denaxas, Spiros Siebert, Stefan Dixon, William G. O’Neill, Terence W. Choy, Ernest Sudlow, Cathie Brophy, Sinead |
author_facet | Zhou, Shang-Ming Fernandez-Gutierrez, Fabiola Kennedy, Jonathan Cooksey, Roxanne Atkinson, Mark Denaxas, Spiros Siebert, Stefan Dixon, William G. O’Neill, Terence W. Choy, Ernest Sudlow, Cathie Brophy, Sinead |
author_sort | Zhou, Shang-Ming |
collection | PubMed |
description | OBJECTIVES: 1) To use data-driven method to examine clinical codes (risk factors) of a medical condition in primary care electronic health records (EHRs) that can accurately predict a diagnosis of the condition in secondary care EHRs. 2) To develop and validate a disease phenotyping algorithm for rheumatoid arthritis using primary care EHRs. METHODS: This study linked routine primary and secondary care EHRs in Wales, UK. A machine learning based scheme was used to identify patients with rheumatoid arthritis from primary care EHRs via the following steps: i) selection of variables by comparing relative frequencies of Read codes in the primary care dataset associated with disease case compared to non-disease control (disease/non-disease based on the secondary care diagnosis); ii) reduction of predictors/associated variables using a Random Forest method, iii) induction of decision rules from decision tree model. The proposed method was then extensively validated on an independent dataset, and compared for performance with two existing deterministic algorithms for RA which had been developed using expert clinical knowledge. RESULTS: Primary care EHRs were available for 2,238,360 patients over the age of 16 and of these 20,667 were also linked in the secondary care rheumatology clinical system. In the linked dataset, 900 predictors (out of a total of 43,100 variables) in the primary care record were discovered more frequently in those with versus those without RA. These variables were reduced to 37 groups of related clinical codes, which were used to develop a decision tree model. The final algorithm identified 8 predictors related to diagnostic codes for RA, medication codes, such as those for disease modifying anti-rheumatic drugs, and absence of alternative diagnoses such as psoriatic arthritis. The proposed data-driven method performed as well as the expert clinical knowledge based methods. CONCLUSION: Data-driven scheme, such as ensemble machine learning methods, has the potential of identifying the most informative predictors in a cost-effective and rapid way to accurately and reliably classify rheumatoid arthritis or other complex medical conditions in primary care EHRs. |
format | Online Article Text |
id | pubmed-4852928 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2016 |
publisher | Public Library of Science |
record_format | MEDLINE/PubMed |
spelling | pubmed-48529282016-05-13 Defining Disease Phenotypes in Primary Care Electronic Health Records by a Machine Learning Approach: A Case Study in Identifying Rheumatoid Arthritis Zhou, Shang-Ming Fernandez-Gutierrez, Fabiola Kennedy, Jonathan Cooksey, Roxanne Atkinson, Mark Denaxas, Spiros Siebert, Stefan Dixon, William G. O’Neill, Terence W. Choy, Ernest Sudlow, Cathie Brophy, Sinead PLoS One Research Article OBJECTIVES: 1) To use data-driven method to examine clinical codes (risk factors) of a medical condition in primary care electronic health records (EHRs) that can accurately predict a diagnosis of the condition in secondary care EHRs. 2) To develop and validate a disease phenotyping algorithm for rheumatoid arthritis using primary care EHRs. METHODS: This study linked routine primary and secondary care EHRs in Wales, UK. A machine learning based scheme was used to identify patients with rheumatoid arthritis from primary care EHRs via the following steps: i) selection of variables by comparing relative frequencies of Read codes in the primary care dataset associated with disease case compared to non-disease control (disease/non-disease based on the secondary care diagnosis); ii) reduction of predictors/associated variables using a Random Forest method, iii) induction of decision rules from decision tree model. The proposed method was then extensively validated on an independent dataset, and compared for performance with two existing deterministic algorithms for RA which had been developed using expert clinical knowledge. RESULTS: Primary care EHRs were available for 2,238,360 patients over the age of 16 and of these 20,667 were also linked in the secondary care rheumatology clinical system. In the linked dataset, 900 predictors (out of a total of 43,100 variables) in the primary care record were discovered more frequently in those with versus those without RA. These variables were reduced to 37 groups of related clinical codes, which were used to develop a decision tree model. The final algorithm identified 8 predictors related to diagnostic codes for RA, medication codes, such as those for disease modifying anti-rheumatic drugs, and absence of alternative diagnoses such as psoriatic arthritis. The proposed data-driven method performed as well as the expert clinical knowledge based methods. CONCLUSION: Data-driven scheme, such as ensemble machine learning methods, has the potential of identifying the most informative predictors in a cost-effective and rapid way to accurately and reliably classify rheumatoid arthritis or other complex medical conditions in primary care EHRs. Public Library of Science 2016-05-02 /pmc/articles/PMC4852928/ /pubmed/27135409 http://dx.doi.org/10.1371/journal.pone.0154515 Text en © 2016 Zhou et al http://creativecommons.org/licenses/by/4.0/ This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0/) , which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. |
spellingShingle | Research Article Zhou, Shang-Ming Fernandez-Gutierrez, Fabiola Kennedy, Jonathan Cooksey, Roxanne Atkinson, Mark Denaxas, Spiros Siebert, Stefan Dixon, William G. O’Neill, Terence W. Choy, Ernest Sudlow, Cathie Brophy, Sinead Defining Disease Phenotypes in Primary Care Electronic Health Records by a Machine Learning Approach: A Case Study in Identifying Rheumatoid Arthritis |
title | Defining Disease Phenotypes in Primary Care Electronic Health Records by a Machine Learning Approach: A Case Study in Identifying Rheumatoid Arthritis |
title_full | Defining Disease Phenotypes in Primary Care Electronic Health Records by a Machine Learning Approach: A Case Study in Identifying Rheumatoid Arthritis |
title_fullStr | Defining Disease Phenotypes in Primary Care Electronic Health Records by a Machine Learning Approach: A Case Study in Identifying Rheumatoid Arthritis |
title_full_unstemmed | Defining Disease Phenotypes in Primary Care Electronic Health Records by a Machine Learning Approach: A Case Study in Identifying Rheumatoid Arthritis |
title_short | Defining Disease Phenotypes in Primary Care Electronic Health Records by a Machine Learning Approach: A Case Study in Identifying Rheumatoid Arthritis |
title_sort | defining disease phenotypes in primary care electronic health records by a machine learning approach: a case study in identifying rheumatoid arthritis |
topic | Research Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4852928/ https://www.ncbi.nlm.nih.gov/pubmed/27135409 http://dx.doi.org/10.1371/journal.pone.0154515 |
work_keys_str_mv | AT zhoushangming definingdiseasephenotypesinprimarycareelectronichealthrecordsbyamachinelearningapproachacasestudyinidentifyingrheumatoidarthritis AT fernandezgutierrezfabiola definingdiseasephenotypesinprimarycareelectronichealthrecordsbyamachinelearningapproachacasestudyinidentifyingrheumatoidarthritis AT kennedyjonathan definingdiseasephenotypesinprimarycareelectronichealthrecordsbyamachinelearningapproachacasestudyinidentifyingrheumatoidarthritis AT cookseyroxanne definingdiseasephenotypesinprimarycareelectronichealthrecordsbyamachinelearningapproachacasestudyinidentifyingrheumatoidarthritis AT atkinsonmark definingdiseasephenotypesinprimarycareelectronichealthrecordsbyamachinelearningapproachacasestudyinidentifyingrheumatoidarthritis AT denaxasspiros definingdiseasephenotypesinprimarycareelectronichealthrecordsbyamachinelearningapproachacasestudyinidentifyingrheumatoidarthritis AT siebertstefan definingdiseasephenotypesinprimarycareelectronichealthrecordsbyamachinelearningapproachacasestudyinidentifyingrheumatoidarthritis AT dixonwilliamg definingdiseasephenotypesinprimarycareelectronichealthrecordsbyamachinelearningapproachacasestudyinidentifyingrheumatoidarthritis AT oneillterencew definingdiseasephenotypesinprimarycareelectronichealthrecordsbyamachinelearningapproachacasestudyinidentifyingrheumatoidarthritis AT choyernest definingdiseasephenotypesinprimarycareelectronichealthrecordsbyamachinelearningapproachacasestudyinidentifyingrheumatoidarthritis AT sudlowcathie definingdiseasephenotypesinprimarycareelectronichealthrecordsbyamachinelearningapproachacasestudyinidentifyingrheumatoidarthritis AT definingdiseasephenotypesinprimarycareelectronichealthrecordsbyamachinelearningapproachacasestudyinidentifyingrheumatoidarthritis AT brophysinead definingdiseasephenotypesinprimarycareelectronichealthrecordsbyamachinelearningapproachacasestudyinidentifyingrheumatoidarthritis |