Cargando…

Genetic Variation and Biological Control of Fusarium graminearum Isolated from Wheat in Assiut-Egypt

Fusarium graminearum Schwabe causes Fusarium head blight (FHB), a devastating disease that leads to extensive yield and quality loss of wheat and other cereal crops. Twelve isolates of F. graminearum were collected from naturally infected spikes of wheat from Assiut Egypt. These isolates were compar...

Descripción completa

Detalles Bibliográficos
Autor principal: Mahmoud, Amer F.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Korean Society of Plant Pathology 2016
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4853104/
https://www.ncbi.nlm.nih.gov/pubmed/27147934
http://dx.doi.org/10.5423/PPJ.OA.09.2015.0201
_version_ 1782430036600553472
author Mahmoud, Amer F.
author_facet Mahmoud, Amer F.
author_sort Mahmoud, Amer F.
collection PubMed
description Fusarium graminearum Schwabe causes Fusarium head blight (FHB), a devastating disease that leads to extensive yield and quality loss of wheat and other cereal crops. Twelve isolates of F. graminearum were collected from naturally infected spikes of wheat from Assiut Egypt. These isolates were compared using SRAP. The results indicated distinct genetic groups exist within F. graminearum, and demonstrated that these groups have different biological properties, especially with respect to their pathogenicity on wheat. There were biologically significant differences between the groups; with group (B) isolates being more aggressive towards wheat than groups (A) and (C). Furthermore, Trichoderma harzianum (Rifai) and Bacillus subtilis (Ehrenberg) which isolated from wheat kernels were screened for antagonistic activity against F. graminearum. They significantly reduced the growth of F. graminearum colonies in culture. In order to gain insight into biological control effect in situ, highly antagonistic isolates of T. harzianum and B. subtilis were selected, based on their in vitro effectiveness, for greenhouse test. It was revealed that T. harzianum and B. subtilis significantly reduced FHB severity. The obtained results indicated that T. harzianum and B. subtilis are very effective biocontrol agents that offer potential benefit in FHB and should be harnessed for further biocontrol applications. The accurate analysis of genetic variation and studies of population structures have significant implications for understanding the genetic traits and disease control programs in wheat. This is the first known report of the distribution and genetic variation of F. graminearum on wheat spikes in Assiut Egypt.
format Online
Article
Text
id pubmed-4853104
institution National Center for Biotechnology Information
language English
publishDate 2016
publisher Korean Society of Plant Pathology
record_format MEDLINE/PubMed
spelling pubmed-48531042016-05-04 Genetic Variation and Biological Control of Fusarium graminearum Isolated from Wheat in Assiut-Egypt Mahmoud, Amer F. Plant Pathol J Research Article Fusarium graminearum Schwabe causes Fusarium head blight (FHB), a devastating disease that leads to extensive yield and quality loss of wheat and other cereal crops. Twelve isolates of F. graminearum were collected from naturally infected spikes of wheat from Assiut Egypt. These isolates were compared using SRAP. The results indicated distinct genetic groups exist within F. graminearum, and demonstrated that these groups have different biological properties, especially with respect to their pathogenicity on wheat. There were biologically significant differences between the groups; with group (B) isolates being more aggressive towards wheat than groups (A) and (C). Furthermore, Trichoderma harzianum (Rifai) and Bacillus subtilis (Ehrenberg) which isolated from wheat kernels were screened for antagonistic activity against F. graminearum. They significantly reduced the growth of F. graminearum colonies in culture. In order to gain insight into biological control effect in situ, highly antagonistic isolates of T. harzianum and B. subtilis were selected, based on their in vitro effectiveness, for greenhouse test. It was revealed that T. harzianum and B. subtilis significantly reduced FHB severity. The obtained results indicated that T. harzianum and B. subtilis are very effective biocontrol agents that offer potential benefit in FHB and should be harnessed for further biocontrol applications. The accurate analysis of genetic variation and studies of population structures have significant implications for understanding the genetic traits and disease control programs in wheat. This is the first known report of the distribution and genetic variation of F. graminearum on wheat spikes in Assiut Egypt. Korean Society of Plant Pathology 2016-04 2016-04-01 /pmc/articles/PMC4853104/ /pubmed/27147934 http://dx.doi.org/10.5423/PPJ.OA.09.2015.0201 Text en © The Korean Society of Plant Pathology This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
spellingShingle Research Article
Mahmoud, Amer F.
Genetic Variation and Biological Control of Fusarium graminearum Isolated from Wheat in Assiut-Egypt
title Genetic Variation and Biological Control of Fusarium graminearum Isolated from Wheat in Assiut-Egypt
title_full Genetic Variation and Biological Control of Fusarium graminearum Isolated from Wheat in Assiut-Egypt
title_fullStr Genetic Variation and Biological Control of Fusarium graminearum Isolated from Wheat in Assiut-Egypt
title_full_unstemmed Genetic Variation and Biological Control of Fusarium graminearum Isolated from Wheat in Assiut-Egypt
title_short Genetic Variation and Biological Control of Fusarium graminearum Isolated from Wheat in Assiut-Egypt
title_sort genetic variation and biological control of fusarium graminearum isolated from wheat in assiut-egypt
topic Research Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4853104/
https://www.ncbi.nlm.nih.gov/pubmed/27147934
http://dx.doi.org/10.5423/PPJ.OA.09.2015.0201
work_keys_str_mv AT mahmoudamerf geneticvariationandbiologicalcontroloffusariumgraminearumisolatedfromwheatinassiutegypt