Cargando…

Follow-up of atheroma burden with sequential whole body contrast enhanced MR angiography: a feasibility study

Assess the feasibility of whole body magnetic resonance angiography (WB-MRA) for monitoring global atheroma burden in a population with peripheral arterial disease (PAD). 50 consecutive patients with symptomatic PAD referred for clinically indicated MRA were recruited. Whole body MRA (WB-MRA) was pe...

Descripción completa

Detalles Bibliográficos
Autores principales: Weir-McCall, Jonathan R., White, Richard D., Ramkumar, Prasad G., Gandy, Stephen J., Khan, Faisel, Belch, Jill J. F., Struthers, Allan D., Houston, J. Graeme
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Springer Netherlands 2016
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4853465/
https://www.ncbi.nlm.nih.gov/pubmed/26809611
http://dx.doi.org/10.1007/s10554-016-0842-z
Descripción
Sumario:Assess the feasibility of whole body magnetic resonance angiography (WB-MRA) for monitoring global atheroma burden in a population with peripheral arterial disease (PAD). 50 consecutive patients with symptomatic PAD referred for clinically indicated MRA were recruited. Whole body MRA (WB-MRA) was performed at baseline, 6 months and 3 years. The vasculature was split into 31 anatomical arterial segments. Each segment was scored according to degree of luminal narrowing: 0 = normal, 1 = <50 %, 2 = 50–70 %, 3 = 71–99 %, 4 = vessel occlusion. The score from all assessable segments was summed, and then normalised to the number of assessable vessels. This normalised score was divided by four (the maximum vessel score) and multiplied by 100 to give a final standardised atheroma score (SAS) with a score of 0–100. Progression was assessed with repeat measure ANOVA. 36 patients were scanned at 0 and 6 months, with 26 patients scanned at the 3 years follow up. Only those who completed all three visits were included in the final analysis. Baseline atherosclerotic burden was high with a mean SAS of 15.7 ± 10.3. No significant progression was present at 6 months (mean SAS 16.4 ± 10.5, p = 0.67), however there was significant disease progression at 3 years (mean SAS 17.7 ± 11.5, p = 0.01). Those with atheroma progression at follow-up were less likely to be on statin therapy (79 vs 100 %, p = 0.04), and had significantly higher baseline SAS (17.6 ± 11.2 vs 10.7 ± 5.1, p = 0.043). Follow up of atheroma burden is possible with WB-MRA, which can successfully quantify and monitor atherosclerosis progression at 3 years follow-up.