Cargando…
Online Knowledge-Based Model for Big Data Topic Extraction
Lifelong machine learning (LML) models learn with experience maintaining a knowledge-base, without user intervention. Unlike traditional single-domain models they can easily scale up to explore big data. The existing LML models have high data dependency, consume more resources, and do not support st...
Autores principales: | Khan, Muhammad Taimoor, Durrani, Mehr, Khalid, Shehzad, Aziz, Furqan |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Hindawi Publishing Corporation
2016
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4853929/ https://www.ncbi.nlm.nih.gov/pubmed/27195004 http://dx.doi.org/10.1155/2016/6081804 |
Ejemplares similares
-
Hierarchical lifelong topic modeling using rules extracted from network communities
por: Khan, Muhammad Taimoor, et al.
Publicado: (2022) -
Asymmetric author-topic model for knowledge discovering of big data in toxicogenomics
por: Chung, Ming-Hua, et al.
Publicado: (2015) -
Big data-drive agent-based modeling of online polarized opinions
por: Lu, Peng, et al.
Publicado: (2021) -
Self voting classification model for online meeting app review sentiment analysis and topic modeling
por: Aslam, Naila, et al.
Publicado: (2022) -
Big knowledge from big data in functional genomics
por: Ponting, Chris P.
Publicado: (2017)