Cargando…
The plant circadian clock looks like a traditional Japanese clock rather than a modern Western clock
Life cycle adaptation to seasonal changes in photoperiod and ambient temperature is a major determinant of the ecological success behind the widespread domestication of flowering plants. The circadian clock plays a role in the underlying mechanism for adaptation through generating endogenous rhythms...
Autores principales: | , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Taylor & Francis
2015
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4854355/ https://www.ncbi.nlm.nih.gov/pubmed/26382718 http://dx.doi.org/10.1080/15592324.2015.1087630 |
Sumario: | Life cycle adaptation to seasonal changes in photoperiod and ambient temperature is a major determinant of the ecological success behind the widespread domestication of flowering plants. The circadian clock plays a role in the underlying mechanism for adaptation through generating endogenous rhythms that allow plants to adapt and adjust to both the 24 h diurnal rotation and 365 d seasonal revolution. Nevertheless, the mechanism by which the circadian clock tracks seasonal changes in photoperiod and temperature is a longstanding subject in the field. Recently, we have begun to understand the question of how the light and ambient temperature signals feed into the circadian clock transcriptional circuitry in day-night cycles in order to track seasonal changes in photoperiod and ambient temperature.(1-4) Our results collectively indicate that the evening complex (EC) nighttime repressor consisting of LUX-ELF3-ELF4 plays a crucial role in this respect. Here, we discuss about these recent studies to add further implications. |
---|