Cargando…
The Impact of Variable Degrees of Freedom and Scale Parameters in Bayesian Methods for Genomic Prediction in Chinese Simmental Beef Cattle
Three conventional Bayesian approaches (BayesA, BayesB and BayesCπ) have been demonstrated to be powerful in predicting genomic merit for complex traits in livestock. A priori, these Bayesian models assume that the non-zero SNP effects (marginally) follow a t-distribution depending on two fixed hype...
Autores principales: | , , , , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2016
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4854473/ https://www.ncbi.nlm.nih.gov/pubmed/27139889 http://dx.doi.org/10.1371/journal.pone.0154118 |
_version_ | 1782430230767468544 |
---|---|
author | Zhu, Bo Zhu, Miao Jiang, Jicai Niu, Hong Wang, Yanhui Wu, Yang Xu, Lingyang Chen, Yan Zhang, Lupei Gao, Xue Gao, Huijiang Liu, Jianfeng Li, Junya |
author_facet | Zhu, Bo Zhu, Miao Jiang, Jicai Niu, Hong Wang, Yanhui Wu, Yang Xu, Lingyang Chen, Yan Zhang, Lupei Gao, Xue Gao, Huijiang Liu, Jianfeng Li, Junya |
author_sort | Zhu, Bo |
collection | PubMed |
description | Three conventional Bayesian approaches (BayesA, BayesB and BayesCπ) have been demonstrated to be powerful in predicting genomic merit for complex traits in livestock. A priori, these Bayesian models assume that the non-zero SNP effects (marginally) follow a t-distribution depending on two fixed hyperparameters, degrees of freedom and scale parameters. In this study, we performed genomic prediction in Chinese Simmental beef cattle and treated degrees of freedom and scale parameters as unknown with inappropriate priors. Furthermore, we compared the modified methods (BayesFA, BayesFB and BayesFCπ) with their corresponding counterparts using simulation datasets. We found that the modified methods with distribution assumed to the two hyperparameters were beneficial for improving the predictive accuracy. Our results showed that the predictive accuracies of the modified methods were slightly higher than those of their counterparts especially for traits with low heritability and a small number of QTLs. Moreover, cross-validation analysis for three traits, namely carcass weight, live weight and tenderloin weight, in 1136 Simmental beef cattle suggested that predictive accuracy of BayesFCπ noticeably outperformed BayesCπ with the highest increase (3.8%) for live weight using the cohort masking cross-validation. |
format | Online Article Text |
id | pubmed-4854473 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2016 |
publisher | Public Library of Science |
record_format | MEDLINE/PubMed |
spelling | pubmed-48544732016-05-07 The Impact of Variable Degrees of Freedom and Scale Parameters in Bayesian Methods for Genomic Prediction in Chinese Simmental Beef Cattle Zhu, Bo Zhu, Miao Jiang, Jicai Niu, Hong Wang, Yanhui Wu, Yang Xu, Lingyang Chen, Yan Zhang, Lupei Gao, Xue Gao, Huijiang Liu, Jianfeng Li, Junya PLoS One Research Article Three conventional Bayesian approaches (BayesA, BayesB and BayesCπ) have been demonstrated to be powerful in predicting genomic merit for complex traits in livestock. A priori, these Bayesian models assume that the non-zero SNP effects (marginally) follow a t-distribution depending on two fixed hyperparameters, degrees of freedom and scale parameters. In this study, we performed genomic prediction in Chinese Simmental beef cattle and treated degrees of freedom and scale parameters as unknown with inappropriate priors. Furthermore, we compared the modified methods (BayesFA, BayesFB and BayesFCπ) with their corresponding counterparts using simulation datasets. We found that the modified methods with distribution assumed to the two hyperparameters were beneficial for improving the predictive accuracy. Our results showed that the predictive accuracies of the modified methods were slightly higher than those of their counterparts especially for traits with low heritability and a small number of QTLs. Moreover, cross-validation analysis for three traits, namely carcass weight, live weight and tenderloin weight, in 1136 Simmental beef cattle suggested that predictive accuracy of BayesFCπ noticeably outperformed BayesCπ with the highest increase (3.8%) for live weight using the cohort masking cross-validation. Public Library of Science 2016-05-03 /pmc/articles/PMC4854473/ /pubmed/27139889 http://dx.doi.org/10.1371/journal.pone.0154118 Text en © 2016 Zhu et al http://creativecommons.org/licenses/by/4.0/ This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0/) , which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. |
spellingShingle | Research Article Zhu, Bo Zhu, Miao Jiang, Jicai Niu, Hong Wang, Yanhui Wu, Yang Xu, Lingyang Chen, Yan Zhang, Lupei Gao, Xue Gao, Huijiang Liu, Jianfeng Li, Junya The Impact of Variable Degrees of Freedom and Scale Parameters in Bayesian Methods for Genomic Prediction in Chinese Simmental Beef Cattle |
title | The Impact of Variable Degrees of Freedom and Scale Parameters in Bayesian Methods for Genomic Prediction in Chinese Simmental Beef Cattle |
title_full | The Impact of Variable Degrees of Freedom and Scale Parameters in Bayesian Methods for Genomic Prediction in Chinese Simmental Beef Cattle |
title_fullStr | The Impact of Variable Degrees of Freedom and Scale Parameters in Bayesian Methods for Genomic Prediction in Chinese Simmental Beef Cattle |
title_full_unstemmed | The Impact of Variable Degrees of Freedom and Scale Parameters in Bayesian Methods for Genomic Prediction in Chinese Simmental Beef Cattle |
title_short | The Impact of Variable Degrees of Freedom and Scale Parameters in Bayesian Methods for Genomic Prediction in Chinese Simmental Beef Cattle |
title_sort | impact of variable degrees of freedom and scale parameters in bayesian methods for genomic prediction in chinese simmental beef cattle |
topic | Research Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4854473/ https://www.ncbi.nlm.nih.gov/pubmed/27139889 http://dx.doi.org/10.1371/journal.pone.0154118 |
work_keys_str_mv | AT zhubo theimpactofvariabledegreesoffreedomandscaleparametersinbayesianmethodsforgenomicpredictioninchinesesimmentalbeefcattle AT zhumiao theimpactofvariabledegreesoffreedomandscaleparametersinbayesianmethodsforgenomicpredictioninchinesesimmentalbeefcattle AT jiangjicai theimpactofvariabledegreesoffreedomandscaleparametersinbayesianmethodsforgenomicpredictioninchinesesimmentalbeefcattle AT niuhong theimpactofvariabledegreesoffreedomandscaleparametersinbayesianmethodsforgenomicpredictioninchinesesimmentalbeefcattle AT wangyanhui theimpactofvariabledegreesoffreedomandscaleparametersinbayesianmethodsforgenomicpredictioninchinesesimmentalbeefcattle AT wuyang theimpactofvariabledegreesoffreedomandscaleparametersinbayesianmethodsforgenomicpredictioninchinesesimmentalbeefcattle AT xulingyang theimpactofvariabledegreesoffreedomandscaleparametersinbayesianmethodsforgenomicpredictioninchinesesimmentalbeefcattle AT chenyan theimpactofvariabledegreesoffreedomandscaleparametersinbayesianmethodsforgenomicpredictioninchinesesimmentalbeefcattle AT zhanglupei theimpactofvariabledegreesoffreedomandscaleparametersinbayesianmethodsforgenomicpredictioninchinesesimmentalbeefcattle AT gaoxue theimpactofvariabledegreesoffreedomandscaleparametersinbayesianmethodsforgenomicpredictioninchinesesimmentalbeefcattle AT gaohuijiang theimpactofvariabledegreesoffreedomandscaleparametersinbayesianmethodsforgenomicpredictioninchinesesimmentalbeefcattle AT liujianfeng theimpactofvariabledegreesoffreedomandscaleparametersinbayesianmethodsforgenomicpredictioninchinesesimmentalbeefcattle AT lijunya theimpactofvariabledegreesoffreedomandscaleparametersinbayesianmethodsforgenomicpredictioninchinesesimmentalbeefcattle AT zhubo impactofvariabledegreesoffreedomandscaleparametersinbayesianmethodsforgenomicpredictioninchinesesimmentalbeefcattle AT zhumiao impactofvariabledegreesoffreedomandscaleparametersinbayesianmethodsforgenomicpredictioninchinesesimmentalbeefcattle AT jiangjicai impactofvariabledegreesoffreedomandscaleparametersinbayesianmethodsforgenomicpredictioninchinesesimmentalbeefcattle AT niuhong impactofvariabledegreesoffreedomandscaleparametersinbayesianmethodsforgenomicpredictioninchinesesimmentalbeefcattle AT wangyanhui impactofvariabledegreesoffreedomandscaleparametersinbayesianmethodsforgenomicpredictioninchinesesimmentalbeefcattle AT wuyang impactofvariabledegreesoffreedomandscaleparametersinbayesianmethodsforgenomicpredictioninchinesesimmentalbeefcattle AT xulingyang impactofvariabledegreesoffreedomandscaleparametersinbayesianmethodsforgenomicpredictioninchinesesimmentalbeefcattle AT chenyan impactofvariabledegreesoffreedomandscaleparametersinbayesianmethodsforgenomicpredictioninchinesesimmentalbeefcattle AT zhanglupei impactofvariabledegreesoffreedomandscaleparametersinbayesianmethodsforgenomicpredictioninchinesesimmentalbeefcattle AT gaoxue impactofvariabledegreesoffreedomandscaleparametersinbayesianmethodsforgenomicpredictioninchinesesimmentalbeefcattle AT gaohuijiang impactofvariabledegreesoffreedomandscaleparametersinbayesianmethodsforgenomicpredictioninchinesesimmentalbeefcattle AT liujianfeng impactofvariabledegreesoffreedomandscaleparametersinbayesianmethodsforgenomicpredictioninchinesesimmentalbeefcattle AT lijunya impactofvariabledegreesoffreedomandscaleparametersinbayesianmethodsforgenomicpredictioninchinesesimmentalbeefcattle |