Cargando…

The Effect of Lipopolysaccharide Core Oligosaccharide Size on the Electrostatic Binding of Antimicrobial Proteins to Models of the Gram Negative Bacterial Outer Membrane

[Image: see text] Understanding the electrostatic interactions between bacterial membranes and exogenous proteins is crucial to designing effective antimicrobial agents against Gram-negative bacteria. Here we study, using neutron reflecometry under multiple isotopic contrast conditions, the role of...

Descripción completa

Detalles Bibliográficos
Autores principales: Clifton, Luke. A., Ciesielski, Filip, Skoda, Maximilian W. A., Paracini, Nicolò, Holt, Stephen A., Lakey, Jeremy H.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: American Chemical Society 2016
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4854487/
https://www.ncbi.nlm.nih.gov/pubmed/27003358
http://dx.doi.org/10.1021/acs.langmuir.6b00240
_version_ 1782430234004422656
author Clifton, Luke. A.
Ciesielski, Filip
Skoda, Maximilian W. A.
Paracini, Nicolò
Holt, Stephen A.
Lakey, Jeremy H.
author_facet Clifton, Luke. A.
Ciesielski, Filip
Skoda, Maximilian W. A.
Paracini, Nicolò
Holt, Stephen A.
Lakey, Jeremy H.
author_sort Clifton, Luke. A.
collection PubMed
description [Image: see text] Understanding the electrostatic interactions between bacterial membranes and exogenous proteins is crucial to designing effective antimicrobial agents against Gram-negative bacteria. Here we study, using neutron reflecometry under multiple isotopic contrast conditions, the role of the uncharged sugar groups in the outer core region of lipopolysaccharide (LPS) in protecting the phosphate-rich inner core region from electrostatic interactions with antimicrobial proteins. Models of the asymmetric Gram negative outer membrane on silicon were prepared with phopshatidylcholine (PC) in the inner leaflet (closest to the silicon), whereas rough LPS was used to form the outer leaflet (facing the bulk solution). We show how salt concentration can be used to reversibly alter the binding affinity of a protein antibiotic colicin N (ColN) to the anionic LPS confirming that the interaction is electrostatic in nature. By examining the interaction of ColN with two rough LPS types with different-sized core oligosaccharide regions we demonstrate the role of uncharged sugars in blocking short-range electrostatic interactions between the cationic antibiotics and the vulnerable anionic phosphate groups.
format Online
Article
Text
id pubmed-4854487
institution National Center for Biotechnology Information
language English
publishDate 2016
publisher American Chemical Society
record_format MEDLINE/PubMed
spelling pubmed-48544872016-05-04 The Effect of Lipopolysaccharide Core Oligosaccharide Size on the Electrostatic Binding of Antimicrobial Proteins to Models of the Gram Negative Bacterial Outer Membrane Clifton, Luke. A. Ciesielski, Filip Skoda, Maximilian W. A. Paracini, Nicolò Holt, Stephen A. Lakey, Jeremy H. Langmuir [Image: see text] Understanding the electrostatic interactions between bacterial membranes and exogenous proteins is crucial to designing effective antimicrobial agents against Gram-negative bacteria. Here we study, using neutron reflecometry under multiple isotopic contrast conditions, the role of the uncharged sugar groups in the outer core region of lipopolysaccharide (LPS) in protecting the phosphate-rich inner core region from electrostatic interactions with antimicrobial proteins. Models of the asymmetric Gram negative outer membrane on silicon were prepared with phopshatidylcholine (PC) in the inner leaflet (closest to the silicon), whereas rough LPS was used to form the outer leaflet (facing the bulk solution). We show how salt concentration can be used to reversibly alter the binding affinity of a protein antibiotic colicin N (ColN) to the anionic LPS confirming that the interaction is electrostatic in nature. By examining the interaction of ColN with two rough LPS types with different-sized core oligosaccharide regions we demonstrate the role of uncharged sugars in blocking short-range electrostatic interactions between the cationic antibiotics and the vulnerable anionic phosphate groups. American Chemical Society 2016-03-22 2016-04-12 /pmc/articles/PMC4854487/ /pubmed/27003358 http://dx.doi.org/10.1021/acs.langmuir.6b00240 Text en Copyright © 2016 American Chemical Society This is an open access article published under a Creative Commons Attribution (CC-BY) License (http://pubs.acs.org/page/policy/authorchoice_ccby_termsofuse.html) , which permits unrestricted use, distribution and reproduction in any medium, provided the author and source are cited.
spellingShingle Clifton, Luke. A.
Ciesielski, Filip
Skoda, Maximilian W. A.
Paracini, Nicolò
Holt, Stephen A.
Lakey, Jeremy H.
The Effect of Lipopolysaccharide Core Oligosaccharide Size on the Electrostatic Binding of Antimicrobial Proteins to Models of the Gram Negative Bacterial Outer Membrane
title The Effect of Lipopolysaccharide Core Oligosaccharide Size on the Electrostatic Binding of Antimicrobial Proteins to Models of the Gram Negative Bacterial Outer Membrane
title_full The Effect of Lipopolysaccharide Core Oligosaccharide Size on the Electrostatic Binding of Antimicrobial Proteins to Models of the Gram Negative Bacterial Outer Membrane
title_fullStr The Effect of Lipopolysaccharide Core Oligosaccharide Size on the Electrostatic Binding of Antimicrobial Proteins to Models of the Gram Negative Bacterial Outer Membrane
title_full_unstemmed The Effect of Lipopolysaccharide Core Oligosaccharide Size on the Electrostatic Binding of Antimicrobial Proteins to Models of the Gram Negative Bacterial Outer Membrane
title_short The Effect of Lipopolysaccharide Core Oligosaccharide Size on the Electrostatic Binding of Antimicrobial Proteins to Models of the Gram Negative Bacterial Outer Membrane
title_sort effect of lipopolysaccharide core oligosaccharide size on the electrostatic binding of antimicrobial proteins to models of the gram negative bacterial outer membrane
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4854487/
https://www.ncbi.nlm.nih.gov/pubmed/27003358
http://dx.doi.org/10.1021/acs.langmuir.6b00240
work_keys_str_mv AT cliftonlukea theeffectoflipopolysaccharidecoreoligosaccharidesizeontheelectrostaticbindingofantimicrobialproteinstomodelsofthegramnegativebacterialoutermembrane
AT ciesielskifilip theeffectoflipopolysaccharidecoreoligosaccharidesizeontheelectrostaticbindingofantimicrobialproteinstomodelsofthegramnegativebacterialoutermembrane
AT skodamaximilianwa theeffectoflipopolysaccharidecoreoligosaccharidesizeontheelectrostaticbindingofantimicrobialproteinstomodelsofthegramnegativebacterialoutermembrane
AT paracininicolo theeffectoflipopolysaccharidecoreoligosaccharidesizeontheelectrostaticbindingofantimicrobialproteinstomodelsofthegramnegativebacterialoutermembrane
AT holtstephena theeffectoflipopolysaccharidecoreoligosaccharidesizeontheelectrostaticbindingofantimicrobialproteinstomodelsofthegramnegativebacterialoutermembrane
AT lakeyjeremyh theeffectoflipopolysaccharidecoreoligosaccharidesizeontheelectrostaticbindingofantimicrobialproteinstomodelsofthegramnegativebacterialoutermembrane
AT cliftonlukea effectoflipopolysaccharidecoreoligosaccharidesizeontheelectrostaticbindingofantimicrobialproteinstomodelsofthegramnegativebacterialoutermembrane
AT ciesielskifilip effectoflipopolysaccharidecoreoligosaccharidesizeontheelectrostaticbindingofantimicrobialproteinstomodelsofthegramnegativebacterialoutermembrane
AT skodamaximilianwa effectoflipopolysaccharidecoreoligosaccharidesizeontheelectrostaticbindingofantimicrobialproteinstomodelsofthegramnegativebacterialoutermembrane
AT paracininicolo effectoflipopolysaccharidecoreoligosaccharidesizeontheelectrostaticbindingofantimicrobialproteinstomodelsofthegramnegativebacterialoutermembrane
AT holtstephena effectoflipopolysaccharidecoreoligosaccharidesizeontheelectrostaticbindingofantimicrobialproteinstomodelsofthegramnegativebacterialoutermembrane
AT lakeyjeremyh effectoflipopolysaccharidecoreoligosaccharidesizeontheelectrostaticbindingofantimicrobialproteinstomodelsofthegramnegativebacterialoutermembrane