Cargando…
The Effect of Lipopolysaccharide Core Oligosaccharide Size on the Electrostatic Binding of Antimicrobial Proteins to Models of the Gram Negative Bacterial Outer Membrane
[Image: see text] Understanding the electrostatic interactions between bacterial membranes and exogenous proteins is crucial to designing effective antimicrobial agents against Gram-negative bacteria. Here we study, using neutron reflecometry under multiple isotopic contrast conditions, the role of...
Autores principales: | , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
American
Chemical Society
2016
|
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4854487/ https://www.ncbi.nlm.nih.gov/pubmed/27003358 http://dx.doi.org/10.1021/acs.langmuir.6b00240 |
_version_ | 1782430234004422656 |
---|---|
author | Clifton, Luke. A. Ciesielski, Filip Skoda, Maximilian W. A. Paracini, Nicolò Holt, Stephen A. Lakey, Jeremy H. |
author_facet | Clifton, Luke. A. Ciesielski, Filip Skoda, Maximilian W. A. Paracini, Nicolò Holt, Stephen A. Lakey, Jeremy H. |
author_sort | Clifton, Luke. A. |
collection | PubMed |
description | [Image: see text] Understanding the electrostatic interactions between bacterial membranes and exogenous proteins is crucial to designing effective antimicrobial agents against Gram-negative bacteria. Here we study, using neutron reflecometry under multiple isotopic contrast conditions, the role of the uncharged sugar groups in the outer core region of lipopolysaccharide (LPS) in protecting the phosphate-rich inner core region from electrostatic interactions with antimicrobial proteins. Models of the asymmetric Gram negative outer membrane on silicon were prepared with phopshatidylcholine (PC) in the inner leaflet (closest to the silicon), whereas rough LPS was used to form the outer leaflet (facing the bulk solution). We show how salt concentration can be used to reversibly alter the binding affinity of a protein antibiotic colicin N (ColN) to the anionic LPS confirming that the interaction is electrostatic in nature. By examining the interaction of ColN with two rough LPS types with different-sized core oligosaccharide regions we demonstrate the role of uncharged sugars in blocking short-range electrostatic interactions between the cationic antibiotics and the vulnerable anionic phosphate groups. |
format | Online Article Text |
id | pubmed-4854487 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2016 |
publisher | American
Chemical Society |
record_format | MEDLINE/PubMed |
spelling | pubmed-48544872016-05-04 The Effect of Lipopolysaccharide Core Oligosaccharide Size on the Electrostatic Binding of Antimicrobial Proteins to Models of the Gram Negative Bacterial Outer Membrane Clifton, Luke. A. Ciesielski, Filip Skoda, Maximilian W. A. Paracini, Nicolò Holt, Stephen A. Lakey, Jeremy H. Langmuir [Image: see text] Understanding the electrostatic interactions between bacterial membranes and exogenous proteins is crucial to designing effective antimicrobial agents against Gram-negative bacteria. Here we study, using neutron reflecometry under multiple isotopic contrast conditions, the role of the uncharged sugar groups in the outer core region of lipopolysaccharide (LPS) in protecting the phosphate-rich inner core region from electrostatic interactions with antimicrobial proteins. Models of the asymmetric Gram negative outer membrane on silicon were prepared with phopshatidylcholine (PC) in the inner leaflet (closest to the silicon), whereas rough LPS was used to form the outer leaflet (facing the bulk solution). We show how salt concentration can be used to reversibly alter the binding affinity of a protein antibiotic colicin N (ColN) to the anionic LPS confirming that the interaction is electrostatic in nature. By examining the interaction of ColN with two rough LPS types with different-sized core oligosaccharide regions we demonstrate the role of uncharged sugars in blocking short-range electrostatic interactions between the cationic antibiotics and the vulnerable anionic phosphate groups. American Chemical Society 2016-03-22 2016-04-12 /pmc/articles/PMC4854487/ /pubmed/27003358 http://dx.doi.org/10.1021/acs.langmuir.6b00240 Text en Copyright © 2016 American Chemical Society This is an open access article published under a Creative Commons Attribution (CC-BY) License (http://pubs.acs.org/page/policy/authorchoice_ccby_termsofuse.html) , which permits unrestricted use, distribution and reproduction in any medium, provided the author and source are cited. |
spellingShingle | Clifton, Luke. A. Ciesielski, Filip Skoda, Maximilian W. A. Paracini, Nicolò Holt, Stephen A. Lakey, Jeremy H. The Effect of Lipopolysaccharide Core Oligosaccharide Size on the Electrostatic Binding of Antimicrobial Proteins to Models of the Gram Negative Bacterial Outer Membrane |
title | The Effect of Lipopolysaccharide Core Oligosaccharide
Size on the Electrostatic Binding of Antimicrobial Proteins to Models
of the Gram Negative Bacterial Outer Membrane |
title_full | The Effect of Lipopolysaccharide Core Oligosaccharide
Size on the Electrostatic Binding of Antimicrobial Proteins to Models
of the Gram Negative Bacterial Outer Membrane |
title_fullStr | The Effect of Lipopolysaccharide Core Oligosaccharide
Size on the Electrostatic Binding of Antimicrobial Proteins to Models
of the Gram Negative Bacterial Outer Membrane |
title_full_unstemmed | The Effect of Lipopolysaccharide Core Oligosaccharide
Size on the Electrostatic Binding of Antimicrobial Proteins to Models
of the Gram Negative Bacterial Outer Membrane |
title_short | The Effect of Lipopolysaccharide Core Oligosaccharide
Size on the Electrostatic Binding of Antimicrobial Proteins to Models
of the Gram Negative Bacterial Outer Membrane |
title_sort | effect of lipopolysaccharide core oligosaccharide
size on the electrostatic binding of antimicrobial proteins to models
of the gram negative bacterial outer membrane |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4854487/ https://www.ncbi.nlm.nih.gov/pubmed/27003358 http://dx.doi.org/10.1021/acs.langmuir.6b00240 |
work_keys_str_mv | AT cliftonlukea theeffectoflipopolysaccharidecoreoligosaccharidesizeontheelectrostaticbindingofantimicrobialproteinstomodelsofthegramnegativebacterialoutermembrane AT ciesielskifilip theeffectoflipopolysaccharidecoreoligosaccharidesizeontheelectrostaticbindingofantimicrobialproteinstomodelsofthegramnegativebacterialoutermembrane AT skodamaximilianwa theeffectoflipopolysaccharidecoreoligosaccharidesizeontheelectrostaticbindingofantimicrobialproteinstomodelsofthegramnegativebacterialoutermembrane AT paracininicolo theeffectoflipopolysaccharidecoreoligosaccharidesizeontheelectrostaticbindingofantimicrobialproteinstomodelsofthegramnegativebacterialoutermembrane AT holtstephena theeffectoflipopolysaccharidecoreoligosaccharidesizeontheelectrostaticbindingofantimicrobialproteinstomodelsofthegramnegativebacterialoutermembrane AT lakeyjeremyh theeffectoflipopolysaccharidecoreoligosaccharidesizeontheelectrostaticbindingofantimicrobialproteinstomodelsofthegramnegativebacterialoutermembrane AT cliftonlukea effectoflipopolysaccharidecoreoligosaccharidesizeontheelectrostaticbindingofantimicrobialproteinstomodelsofthegramnegativebacterialoutermembrane AT ciesielskifilip effectoflipopolysaccharidecoreoligosaccharidesizeontheelectrostaticbindingofantimicrobialproteinstomodelsofthegramnegativebacterialoutermembrane AT skodamaximilianwa effectoflipopolysaccharidecoreoligosaccharidesizeontheelectrostaticbindingofantimicrobialproteinstomodelsofthegramnegativebacterialoutermembrane AT paracininicolo effectoflipopolysaccharidecoreoligosaccharidesizeontheelectrostaticbindingofantimicrobialproteinstomodelsofthegramnegativebacterialoutermembrane AT holtstephena effectoflipopolysaccharidecoreoligosaccharidesizeontheelectrostaticbindingofantimicrobialproteinstomodelsofthegramnegativebacterialoutermembrane AT lakeyjeremyh effectoflipopolysaccharidecoreoligosaccharidesizeontheelectrostaticbindingofantimicrobialproteinstomodelsofthegramnegativebacterialoutermembrane |