Cargando…
Magnetically guided central nervous system delivery and toxicity evaluation of magneto-electric nanocarriers
Least component-based delivery of drug-tagged-nanocarriers across blood-brain-barriers (BBB) will allow site-specific and on-demand release of therapeutics to prevent CNS diseases. We developed a non-invasive magnetically guided delivery of magneto-electric nanocarriers (MENCs), ~20 nm, 10 mg/kg, ac...
Autores principales: | , , , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group
2016
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4855156/ https://www.ncbi.nlm.nih.gov/pubmed/27143580 http://dx.doi.org/10.1038/srep25309 |
Sumario: | Least component-based delivery of drug-tagged-nanocarriers across blood-brain-barriers (BBB) will allow site-specific and on-demand release of therapeutics to prevent CNS diseases. We developed a non-invasive magnetically guided delivery of magneto-electric nanocarriers (MENCs), ~20 nm, 10 mg/kg, across BBB in C57Bl/J mice. Delivered MENCs were uniformly distributed inside the brain, and were non-toxic to brain and other major organs, such as kidney, lung, liver, and spleen, and did not affect hepatic, kidney and neurobehavioral functioning. |
---|