Cargando…
A machine learning correction for DFT non-covalent interactions based on the S22, S66 and X40 benchmark databases
BACKGROUND: Non-covalent interactions (NCIs) play critical roles in supramolecular chemistries; however, they are difficult to measure. Currently, reliable computational methods are being pursued to meet this challenge, but the accuracy of calculations based on low levels of theory is not satisfacto...
Autores principales: | Gao, Ting, Li, Hongzhi, Li, Wenze, Li, Lin, Fang, Chao, Li, Hui, Hu, LiHong, Lu, Yinghua, Su, Zhong-Min |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Springer International Publishing
2016
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4855356/ https://www.ncbi.nlm.nih.gov/pubmed/27148408 http://dx.doi.org/10.1186/s13321-016-0133-7 |
Ejemplares similares
-
S66: A Well-balanced Database of Benchmark Interaction Energies Relevant to Biomolecular Structures
por: Řezáč, Jan, et al.
Publicado: (2011) -
Erratum to “S66: A Well-balanced Database of
Benchmark Interaction Energies Relevant to Biomolecular Structures”
por: Řezáč, Jan, et al.
Publicado: (2014) -
Erratum: Vol. 66, No. 40
Publicado: (2017) -
Beta decay of $^{66}$Mn to the $N = 40$ nucleus $^{66}$Fe
por: Olaizola, B, et al.
Publicado: (2017) -
Erratum: Vol. 66, No. 22
Publicado: (2017)