Cargando…
Unsupervised Gaussian Mixture-Model With Expectation Maximization for Detecting Glaucomatous Progression in Standard Automated Perimetry Visual Fields
PURPOSE: To validate Gaussian mixture-model with expectation maximization (GEM) and variational Bayesian independent component analysis mixture-models (VIM) for detecting glaucomatous progression along visual field (VF) defect patterns (GEM–progression of patterns (POP) and VIM-POP). To compare GEM-...
Autores principales: | Yousefi, Siamak, Balasubramanian, Madhusudhanan, Goldbaum, Michael H., Medeiros, Felipe A., Zangwill, Linda M., Weinreb, Robert N., Liebmann, Jeffrey M., Girkin, Christopher A., Bowd, Christopher |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
The Association for Research in Vision and Ophthalmology
2016
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4855479/ https://www.ncbi.nlm.nih.gov/pubmed/27152250 http://dx.doi.org/10.1167/tvst.5.3.2 |
Ejemplares similares
-
Glaucomatous Patterns in Frequency Doubling Technology (FDT) Perimetry Data Identified by Unsupervised Machine Learning Classifiers
por: Bowd, Christopher, et al.
Publicado: (2014) -
Performance of Deep Learning Architectures and Transfer Learning for Detecting Glaucomatous Optic Neuropathy in Fundus Photographs
por: Christopher, Mark, et al.
Publicado: (2018) -
Retinal Nerve Fiber Layer Features Identified by Unsupervised Machine Learning on Optical Coherence Tomography Scans Predict Glaucoma Progression
por: Christopher, Mark, et al.
Publicado: (2018) -
Structural Change Can Be Detected in Advanced-Glaucoma Eyes
por: Belghith, Akram, et al.
Publicado: (2016) -
Heidelberg Edge Perimetry for the Detection of Early Glaucomatous Damage: A Case Report
por: Marvasti, Amir H., et al.
Publicado: (2013)