Cargando…
Decreased Cerebellar-Orbitofrontal Connectivity Correlates with Stuttering Severity: Whole-Brain Functional and Structural Connectivity Associations with Persistent Developmental Stuttering
Persistent developmental stuttering is characterized by speech production disfluency and affects 1% of adults. The degree of impairment varies widely across individuals and the neural mechanisms underlying the disorder and this variability remain poorly understood. Here we elucidate compensatory mec...
Autores principales: | , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2016
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4855981/ https://www.ncbi.nlm.nih.gov/pubmed/27199712 http://dx.doi.org/10.3389/fnhum.2016.00190 |
_version_ | 1782430444822724608 |
---|---|
author | Sitek, Kevin R. Cai, Shanqing Beal, Deryk S. Perkell, Joseph S. Guenther, Frank H. Ghosh, Satrajit S. |
author_facet | Sitek, Kevin R. Cai, Shanqing Beal, Deryk S. Perkell, Joseph S. Guenther, Frank H. Ghosh, Satrajit S. |
author_sort | Sitek, Kevin R. |
collection | PubMed |
description | Persistent developmental stuttering is characterized by speech production disfluency and affects 1% of adults. The degree of impairment varies widely across individuals and the neural mechanisms underlying the disorder and this variability remain poorly understood. Here we elucidate compensatory mechanisms related to this variability in impairment using whole-brain functional and white matter connectivity analyses in persistent developmental stuttering. We found that people who stutter had stronger functional connectivity between cerebellum and thalamus than people with fluent speech, while stutterers with the least severe symptoms had greater functional connectivity between left cerebellum and left orbitofrontal cortex (OFC). Additionally, people who stutter had decreased functional and white matter connectivity among the perisylvian auditory, motor, and speech planning regions compared to typical speakers, but greater functional connectivity between the right basal ganglia and bilateral temporal auditory regions. Structurally, disfluency ratings were negatively correlated with white matter connections to left perisylvian regions and to the brain stem. Overall, we found increased connectivity among subcortical and reward network structures in people who stutter compared to controls. These connections were negatively correlated with stuttering severity, suggesting the involvement of cerebellum and OFC may underlie successful compensatory mechanisms by more fluent stutterers. |
format | Online Article Text |
id | pubmed-4855981 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2016 |
publisher | Frontiers Media S.A. |
record_format | MEDLINE/PubMed |
spelling | pubmed-48559812016-05-19 Decreased Cerebellar-Orbitofrontal Connectivity Correlates with Stuttering Severity: Whole-Brain Functional and Structural Connectivity Associations with Persistent Developmental Stuttering Sitek, Kevin R. Cai, Shanqing Beal, Deryk S. Perkell, Joseph S. Guenther, Frank H. Ghosh, Satrajit S. Front Hum Neurosci Neuroscience Persistent developmental stuttering is characterized by speech production disfluency and affects 1% of adults. The degree of impairment varies widely across individuals and the neural mechanisms underlying the disorder and this variability remain poorly understood. Here we elucidate compensatory mechanisms related to this variability in impairment using whole-brain functional and white matter connectivity analyses in persistent developmental stuttering. We found that people who stutter had stronger functional connectivity between cerebellum and thalamus than people with fluent speech, while stutterers with the least severe symptoms had greater functional connectivity between left cerebellum and left orbitofrontal cortex (OFC). Additionally, people who stutter had decreased functional and white matter connectivity among the perisylvian auditory, motor, and speech planning regions compared to typical speakers, but greater functional connectivity between the right basal ganglia and bilateral temporal auditory regions. Structurally, disfluency ratings were negatively correlated with white matter connections to left perisylvian regions and to the brain stem. Overall, we found increased connectivity among subcortical and reward network structures in people who stutter compared to controls. These connections were negatively correlated with stuttering severity, suggesting the involvement of cerebellum and OFC may underlie successful compensatory mechanisms by more fluent stutterers. Frontiers Media S.A. 2016-05-03 /pmc/articles/PMC4855981/ /pubmed/27199712 http://dx.doi.org/10.3389/fnhum.2016.00190 Text en Copyright © 2016 Sitek, Cai, Beal, Perkell, Guenther and Ghosh. http://creativecommons.org/licenses/by/4.0/ This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution and reproduction in other forums is permitted, provided the original author(s) or licensor are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms. |
spellingShingle | Neuroscience Sitek, Kevin R. Cai, Shanqing Beal, Deryk S. Perkell, Joseph S. Guenther, Frank H. Ghosh, Satrajit S. Decreased Cerebellar-Orbitofrontal Connectivity Correlates with Stuttering Severity: Whole-Brain Functional and Structural Connectivity Associations with Persistent Developmental Stuttering |
title | Decreased Cerebellar-Orbitofrontal Connectivity Correlates with Stuttering Severity: Whole-Brain Functional and Structural Connectivity Associations with Persistent Developmental Stuttering |
title_full | Decreased Cerebellar-Orbitofrontal Connectivity Correlates with Stuttering Severity: Whole-Brain Functional and Structural Connectivity Associations with Persistent Developmental Stuttering |
title_fullStr | Decreased Cerebellar-Orbitofrontal Connectivity Correlates with Stuttering Severity: Whole-Brain Functional and Structural Connectivity Associations with Persistent Developmental Stuttering |
title_full_unstemmed | Decreased Cerebellar-Orbitofrontal Connectivity Correlates with Stuttering Severity: Whole-Brain Functional and Structural Connectivity Associations with Persistent Developmental Stuttering |
title_short | Decreased Cerebellar-Orbitofrontal Connectivity Correlates with Stuttering Severity: Whole-Brain Functional and Structural Connectivity Associations with Persistent Developmental Stuttering |
title_sort | decreased cerebellar-orbitofrontal connectivity correlates with stuttering severity: whole-brain functional and structural connectivity associations with persistent developmental stuttering |
topic | Neuroscience |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4855981/ https://www.ncbi.nlm.nih.gov/pubmed/27199712 http://dx.doi.org/10.3389/fnhum.2016.00190 |
work_keys_str_mv | AT sitekkevinr decreasedcerebellarorbitofrontalconnectivitycorrelateswithstutteringseveritywholebrainfunctionalandstructuralconnectivityassociationswithpersistentdevelopmentalstuttering AT caishanqing decreasedcerebellarorbitofrontalconnectivitycorrelateswithstutteringseveritywholebrainfunctionalandstructuralconnectivityassociationswithpersistentdevelopmentalstuttering AT bealderyks decreasedcerebellarorbitofrontalconnectivitycorrelateswithstutteringseveritywholebrainfunctionalandstructuralconnectivityassociationswithpersistentdevelopmentalstuttering AT perkelljosephs decreasedcerebellarorbitofrontalconnectivitycorrelateswithstutteringseveritywholebrainfunctionalandstructuralconnectivityassociationswithpersistentdevelopmentalstuttering AT guentherfrankh decreasedcerebellarorbitofrontalconnectivitycorrelateswithstutteringseveritywholebrainfunctionalandstructuralconnectivityassociationswithpersistentdevelopmentalstuttering AT ghoshsatrajits decreasedcerebellarorbitofrontalconnectivitycorrelateswithstutteringseveritywholebrainfunctionalandstructuralconnectivityassociationswithpersistentdevelopmentalstuttering |