Cargando…

Genomic Bayesian Prediction Model for Count Data with Genotype × Environment Interaction

Genomic tools allow the study of the whole genome, and facilitate the study of genotype-environment combinations and their relationship with phenotype. However, most genomic prediction models developed so far are appropriate for Gaussian phenotypes. For this reason, appropriate genomic prediction mo...

Descripción completa

Detalles Bibliográficos
Autores principales: Montesinos-López, Abelardo, Montesinos-López, Osval A., Crossa, José, Burgueño, Juan, Eskridge, Kent M., Falconi-Castillo, Esteban, He, Xinyao, Singh, Pawan, Cichy, Karen
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Genetics Society of America 2016
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4856070/
https://www.ncbi.nlm.nih.gov/pubmed/26921298
http://dx.doi.org/10.1534/g3.116.028118
_version_ 1782430451208552448
author Montesinos-López, Abelardo
Montesinos-López, Osval A.
Crossa, José
Burgueño, Juan
Eskridge, Kent M.
Falconi-Castillo, Esteban
He, Xinyao
Singh, Pawan
Cichy, Karen
author_facet Montesinos-López, Abelardo
Montesinos-López, Osval A.
Crossa, José
Burgueño, Juan
Eskridge, Kent M.
Falconi-Castillo, Esteban
He, Xinyao
Singh, Pawan
Cichy, Karen
author_sort Montesinos-López, Abelardo
collection PubMed
description Genomic tools allow the study of the whole genome, and facilitate the study of genotype-environment combinations and their relationship with phenotype. However, most genomic prediction models developed so far are appropriate for Gaussian phenotypes. For this reason, appropriate genomic prediction models are needed for count data, since the conventional regression models used on count data with a large sample size ([Formula: see text]) and a small number of parameters (p) cannot be used for genomic-enabled prediction where the number of parameters (p) is larger than the sample size ([Formula: see text]). Here, we propose a Bayesian mixed-negative binomial (BMNB) genomic regression model for counts that takes into account genotype by environment [Formula: see text] interaction. We also provide all the full conditional distributions to implement a Gibbs sampler. We evaluated the proposed model using a simulated data set, and a real wheat data set from the International Maize and Wheat Improvement Center (CIMMYT) and collaborators. Results indicate that our BMNB model provides a viable option for analyzing count data.
format Online
Article
Text
id pubmed-4856070
institution National Center for Biotechnology Information
language English
publishDate 2016
publisher Genetics Society of America
record_format MEDLINE/PubMed
spelling pubmed-48560702016-05-05 Genomic Bayesian Prediction Model for Count Data with Genotype × Environment Interaction Montesinos-López, Abelardo Montesinos-López, Osval A. Crossa, José Burgueño, Juan Eskridge, Kent M. Falconi-Castillo, Esteban He, Xinyao Singh, Pawan Cichy, Karen G3 (Bethesda) Genomic Selection Genomic tools allow the study of the whole genome, and facilitate the study of genotype-environment combinations and their relationship with phenotype. However, most genomic prediction models developed so far are appropriate for Gaussian phenotypes. For this reason, appropriate genomic prediction models are needed for count data, since the conventional regression models used on count data with a large sample size ([Formula: see text]) and a small number of parameters (p) cannot be used for genomic-enabled prediction where the number of parameters (p) is larger than the sample size ([Formula: see text]). Here, we propose a Bayesian mixed-negative binomial (BMNB) genomic regression model for counts that takes into account genotype by environment [Formula: see text] interaction. We also provide all the full conditional distributions to implement a Gibbs sampler. We evaluated the proposed model using a simulated data set, and a real wheat data set from the International Maize and Wheat Improvement Center (CIMMYT) and collaborators. Results indicate that our BMNB model provides a viable option for analyzing count data. Genetics Society of America 2016-02-25 /pmc/articles/PMC4856070/ /pubmed/26921298 http://dx.doi.org/10.1534/g3.116.028118 Text en Copyright © 2016 Montesinos-López et al http://creativecommons.org/licenses/by/4.0/ This is an open-access article distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
spellingShingle Genomic Selection
Montesinos-López, Abelardo
Montesinos-López, Osval A.
Crossa, José
Burgueño, Juan
Eskridge, Kent M.
Falconi-Castillo, Esteban
He, Xinyao
Singh, Pawan
Cichy, Karen
Genomic Bayesian Prediction Model for Count Data with Genotype × Environment Interaction
title Genomic Bayesian Prediction Model for Count Data with Genotype × Environment Interaction
title_full Genomic Bayesian Prediction Model for Count Data with Genotype × Environment Interaction
title_fullStr Genomic Bayesian Prediction Model for Count Data with Genotype × Environment Interaction
title_full_unstemmed Genomic Bayesian Prediction Model for Count Data with Genotype × Environment Interaction
title_short Genomic Bayesian Prediction Model for Count Data with Genotype × Environment Interaction
title_sort genomic bayesian prediction model for count data with genotype × environment interaction
topic Genomic Selection
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4856070/
https://www.ncbi.nlm.nih.gov/pubmed/26921298
http://dx.doi.org/10.1534/g3.116.028118
work_keys_str_mv AT montesinoslopezabelardo genomicbayesianpredictionmodelforcountdatawithgenotypeenvironmentinteraction
AT montesinoslopezosvala genomicbayesianpredictionmodelforcountdatawithgenotypeenvironmentinteraction
AT crossajose genomicbayesianpredictionmodelforcountdatawithgenotypeenvironmentinteraction
AT burguenojuan genomicbayesianpredictionmodelforcountdatawithgenotypeenvironmentinteraction
AT eskridgekentm genomicbayesianpredictionmodelforcountdatawithgenotypeenvironmentinteraction
AT falconicastilloesteban genomicbayesianpredictionmodelforcountdatawithgenotypeenvironmentinteraction
AT hexinyao genomicbayesianpredictionmodelforcountdatawithgenotypeenvironmentinteraction
AT singhpawan genomicbayesianpredictionmodelforcountdatawithgenotypeenvironmentinteraction
AT cichykaren genomicbayesianpredictionmodelforcountdatawithgenotypeenvironmentinteraction