Cargando…
Practical Approaches for Mining Frequent Patterns in Molecular Datasets
Pattern detection is an inherent task in the analysis and interpretation of complex and continuously accumulating biological data. Numerous itemset mining algorithms have been developed in the last decade to efficiently detect specific pattern classes in data. Although many of these have proven thei...
Autores principales: | Naulaerts, Stefan, Moens, Sandy, Engelen, Kristof, Berghe, Wim Vanden, Goethals, Bart, Laukens, Kris, Meysman, Pieter |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Libertas Academica
2016
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4856181/ https://www.ncbi.nlm.nih.gov/pubmed/27168722 http://dx.doi.org/10.4137/BBI.S38419 |
Ejemplares similares
-
A primer to frequent itemset mining for bioinformatics
por: Naulaerts, Stefan, et al.
Publicado: (2015) -
Mining the human proteome for conserved mechanisms
por: Naulaerts, Stefan, et al.
Publicado: (2015) -
Mining the entire Protein DataBank for frequent spatially cohesive amino acid patterns
por: Meysman, Pieter, et al.
Publicado: (2015) -
Grasping frequent subgraph mining for bioinformatics applications
por: Mrzic, Aida, et al.
Publicado: (2018) -
Unravelling associations between unassigned mass spectrometry peaks with frequent itemset mining techniques
por: Vu, Trung Nghia, et al.
Publicado: (2014)