Cargando…

Lid mobility in lipase SMG1 validated using a thiol/disulfide redox potential probe

Most lipases possess a lid domain above the catalytic site that is responsible for their activation. Lipase SMG1 from Malassezia globose CBS 7966 (Malassezia globosa LIP1), is a mono‐ and diacylglycerol lipase with an atypical loop‐like lid domain. Activation of SMG1 was proposed to be solely throug...

Descripción completa

Detalles Bibliográficos
Autores principales: Guo, Shaohua, Popowicz, Grzegorz Maria, Li, Daoming, Yuan, Dongjuan, Wang, Yonghua
Formato: Online Artículo Texto
Lenguaje:English
Publicado: John Wiley and Sons Inc. 2016
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4856426/
https://www.ncbi.nlm.nih.gov/pubmed/27419053
http://dx.doi.org/10.1002/2211-5463.12059
Descripción
Sumario:Most lipases possess a lid domain above the catalytic site that is responsible for their activation. Lipase SMG1 from Malassezia globose CBS 7966 (Malassezia globosa LIP1), is a mono‐ and diacylglycerol lipase with an atypical loop‐like lid domain. Activation of SMG1 was proposed to be solely through a gating mechanism involving two residues (F278 and N102). However, through disulfide bond cross‐linking of the lid, this study shows that full activation also requires mobility of the lid domain, contrary to a previous proposal. The newly introduced disulfide bond makes lipase SMG1 eligible as a ratiometric thiol/disulfide redox potential probe, when it is coupled with chromogenic substrates. This redox‐switch lipase could also be of potential use in cascade biocatalysis.