Cargando…
ZeitZeiger: supervised learning for high-dimensional data from an oscillatory system
Numerous biological systems oscillate over time or space. Despite these oscillators’ importance, data from an oscillatory system is problematic for existing methods of regularized supervised learning. We present ZeitZeiger, a method to predict a periodic variable (e.g. time of day) from a high-dimen...
Autores principales: | Hughey, Jacob J., Hastie, Trevor, Butte, Atul J. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Oxford University Press
2016
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4856978/ https://www.ncbi.nlm.nih.gov/pubmed/26819407 http://dx.doi.org/10.1093/nar/gkw030 |
Ejemplares similares
-
Robust meta-analysis of gene expression using the elastic net
por: Hughey, Jacob J., et al.
Publicado: (2015) -
Order restricted inference for oscillatory systems for detecting rhythmic signals
por: Larriba, Yolanda, et al.
Publicado: (2016) -
TAGOOS: genome-wide supervised learning of non-coding loci associated to complex phenotypes
por: González, Aitor, et al.
Publicado: (2019) -
SuperCT: a supervised-learning framework for enhanced characterization of single-cell transcriptomic profiles
por: Xie, Peng, et al.
Publicado: (2019) -
Robust lineage reconstruction from high-dimensional single-cell data
por: Giecold, Gregory, et al.
Publicado: (2016)