Cargando…

The prominent role of the cerebellum in the learning, origin and advancement of culture

BACKGROUND: Vandervert described how, in collaboration with the cerebral cortex, unconscious learning of cerebellar internal models leads to enhanced executive control in working memory in expert music performance and in scientific discovery. Following Vandervert’s arguments, it is proposed that sin...

Descripción completa

Detalles Bibliográficos
Autor principal: Vandervert, Larry
Formato: Online Artículo Texto
Lenguaje:English
Publicado: BioMed Central 2016
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4857280/
https://www.ncbi.nlm.nih.gov/pubmed/27152200
http://dx.doi.org/10.1186/s40673-016-0049-z
_version_ 1782430624234078208
author Vandervert, Larry
author_facet Vandervert, Larry
author_sort Vandervert, Larry
collection PubMed
description BACKGROUND: Vandervert described how, in collaboration with the cerebral cortex, unconscious learning of cerebellar internal models leads to enhanced executive control in working memory in expert music performance and in scientific discovery. Following Vandervert’s arguments, it is proposed that since music performance and scientific discovery, two pillars of cultural learning and advancement, are learned through in cerebellar internal models, it is reasonable that additional if not all components of culture may be learned in the same way. Within this perspective strong evidence is presented that argues that the learning, maintenance, and advancement of culture are accomplished primarily by recently-evolved (the last million or so years) motor/cognitive functions of the cerebellum and not primarily by the cerebral cortex as previously assumed. It is suggested that the unconscious cerebellar mechanism behind the origin and learning of culture greatly expands Ito’s conception of the cerebellum as “a brain for an implicit self.” RESULTS: Through the mechanism of predictive sequence detection in cerebellar internal models related to the body, other persons, or the environment, it is shown how individuals can unconsciously learn the elements of culture and yet, at the same time, be in social sync with other members of culture. Further, this predictive, cerebellar mechanism of socialization toward the norms of culture is hypothesized to be diminished among children who experience excessive television viewing, which results in lower grades, poor socialization, and diminished executive control. CONCLUSION: It is concluded that the essential components of culture are learned and sustained not by the cerebral cortex alone as many traditionally believe, but are learned through repetitious improvements in prediction and control by internal models in the cerebellum. From this perspective, the following new explanations of culture are discussed: (1) how culture can be learned unconsciously but yet be socially in sync with others, (2) how the recent evolutionary expansion of the cerebellum was involved in the co-evolution of earliest stone tools and language—leading to the cerebellum-driven origin of culture, (3) how cerebellar internal models are blended to produce the creative, forward advances in culture, (4) how the blending of cerebellar internal models led to human, multi-component, infinitely partitionable and communicable working memory, (5) how excessive television viewing may represent a cultural shift that diminishes the observational learning of internal models of the behavior of others and thus may result in a mild, parallel version of Schmahmann’s cerebellar cognitive affective syndrome.
format Online
Article
Text
id pubmed-4857280
institution National Center for Biotechnology Information
language English
publishDate 2016
publisher BioMed Central
record_format MEDLINE/PubMed
spelling pubmed-48572802016-05-06 The prominent role of the cerebellum in the learning, origin and advancement of culture Vandervert, Larry Cerebellum Ataxias Research BACKGROUND: Vandervert described how, in collaboration with the cerebral cortex, unconscious learning of cerebellar internal models leads to enhanced executive control in working memory in expert music performance and in scientific discovery. Following Vandervert’s arguments, it is proposed that since music performance and scientific discovery, two pillars of cultural learning and advancement, are learned through in cerebellar internal models, it is reasonable that additional if not all components of culture may be learned in the same way. Within this perspective strong evidence is presented that argues that the learning, maintenance, and advancement of culture are accomplished primarily by recently-evolved (the last million or so years) motor/cognitive functions of the cerebellum and not primarily by the cerebral cortex as previously assumed. It is suggested that the unconscious cerebellar mechanism behind the origin and learning of culture greatly expands Ito’s conception of the cerebellum as “a brain for an implicit self.” RESULTS: Through the mechanism of predictive sequence detection in cerebellar internal models related to the body, other persons, or the environment, it is shown how individuals can unconsciously learn the elements of culture and yet, at the same time, be in social sync with other members of culture. Further, this predictive, cerebellar mechanism of socialization toward the norms of culture is hypothesized to be diminished among children who experience excessive television viewing, which results in lower grades, poor socialization, and diminished executive control. CONCLUSION: It is concluded that the essential components of culture are learned and sustained not by the cerebral cortex alone as many traditionally believe, but are learned through repetitious improvements in prediction and control by internal models in the cerebellum. From this perspective, the following new explanations of culture are discussed: (1) how culture can be learned unconsciously but yet be socially in sync with others, (2) how the recent evolutionary expansion of the cerebellum was involved in the co-evolution of earliest stone tools and language—leading to the cerebellum-driven origin of culture, (3) how cerebellar internal models are blended to produce the creative, forward advances in culture, (4) how the blending of cerebellar internal models led to human, multi-component, infinitely partitionable and communicable working memory, (5) how excessive television viewing may represent a cultural shift that diminishes the observational learning of internal models of the behavior of others and thus may result in a mild, parallel version of Schmahmann’s cerebellar cognitive affective syndrome. BioMed Central 2016-05-05 /pmc/articles/PMC4857280/ /pubmed/27152200 http://dx.doi.org/10.1186/s40673-016-0049-z Text en © Vandervert. 2016 Open AccessThis article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated.
spellingShingle Research
Vandervert, Larry
The prominent role of the cerebellum in the learning, origin and advancement of culture
title The prominent role of the cerebellum in the learning, origin and advancement of culture
title_full The prominent role of the cerebellum in the learning, origin and advancement of culture
title_fullStr The prominent role of the cerebellum in the learning, origin and advancement of culture
title_full_unstemmed The prominent role of the cerebellum in the learning, origin and advancement of culture
title_short The prominent role of the cerebellum in the learning, origin and advancement of culture
title_sort prominent role of the cerebellum in the learning, origin and advancement of culture
topic Research
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4857280/
https://www.ncbi.nlm.nih.gov/pubmed/27152200
http://dx.doi.org/10.1186/s40673-016-0049-z
work_keys_str_mv AT vandervertlarry theprominentroleofthecerebelluminthelearningoriginandadvancementofculture
AT vandervertlarry prominentroleofthecerebelluminthelearningoriginandadvancementofculture