Cargando…
Glycosylphosphatidylinositols: More than just an anchor?
There is increasing interest in the role of glycosylphosphatidylinositol (GPI) anchors that attach some proteins to cell membranes. Far from being biologically inert, GPIs influence the targeting, intracellular trafficking and function of the attached protein. Our recent paper demonstrated the role...
Autores principales: | , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Taylor & Francis
2016
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4857774/ https://www.ncbi.nlm.nih.gov/pubmed/27195066 http://dx.doi.org/10.1080/19420889.2016.1149671 |
Sumario: | There is increasing interest in the role of glycosylphosphatidylinositol (GPI) anchors that attach some proteins to cell membranes. Far from being biologically inert, GPIs influence the targeting, intracellular trafficking and function of the attached protein. Our recent paper demonstrated the role of sialic acid on the GPI of the cellular prion protein (PrP(C)). The “prion diseases” arise following the conversion of PrP(C) to a disease-associated isoform called PrP(Sc) or “prion”. Our paper showed that desialylated PrP(C) inhibited PrP(Sc) formation. Aggregated PrP(Sc) creates a signaling platform in the cell membrane incorporating and activating cytoplasmic phospholipase A(2) (cPLA(2)), an enzyme that regulates PrP(C) trafficking and hence PrP(Sc )formation. The presence of desialylated PrP(C) caused the dissociation of cPLA(2) from PrP-containing platforms, reduced the activation of cPLA(2) and inhibited PrP(Sc) production. We concluded that sialic acid contained within the GPI attached to PrP(C) modifies local membrane microenvironments that are important in PrP-mediated cell signaling and PrP(Sc) formation. |
---|