Cargando…

Unsteady Squeezing Flow of Carbon Nanotubes with Convective Boundary Conditions

Unsteady flow of nanofluids squeezed between two parallel plates is discussed in the presence of viscous dissipation. Heat transfer phenomenon is disclosed via convective boundary conditions. Carbon nanotubes (single-wall and multi-wall) are used as nanoparticles which are homogeneously distributed...

Descripción completa

Detalles Bibliográficos
Autores principales: Hayat, Tasawar, Muhammad, Khursheed, Farooq, Muhammad, Alsaedi, Ahmad
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Public Library of Science 2016
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4858164/
https://www.ncbi.nlm.nih.gov/pubmed/27149208
http://dx.doi.org/10.1371/journal.pone.0152923
Descripción
Sumario:Unsteady flow of nanofluids squeezed between two parallel plates is discussed in the presence of viscous dissipation. Heat transfer phenomenon is disclosed via convective boundary conditions. Carbon nanotubes (single-wall and multi-wall) are used as nanoparticles which are homogeneously distributed in the base fluid (water). A system of non-linear differential equations for the flow is obtained by utilizing similarity transformations through the conservation laws. Influence of various emerging parameters on the velocity and temperature profiles are sketched graphically and discussed comprehensively. Analyses of skin fraction coefficient and Nusselt number are also elaborated numerically. It is found out that velocity is smaller for squeezing parameter in the case of multi-wall carbon nanotubes when compared with single-wall carbon nanotubes.