Cargando…

A Curated Database of Rodent Uterotrophic Bioactivity

BACKGROUND: Novel in vitro methods are being developed to identify chemicals that may interfere with estrogen receptor (ER) signaling, but the results are difficult to put into biological context because of reliance on reference chemicals established using results from other in vitro assays and beca...

Descripción completa

Detalles Bibliográficos
Autores principales: Kleinstreuer, Nicole C., Ceger, Patricia C., Allen, David G., Strickland, Judy, Chang, Xiaoqing, Hamm, Jonathan T., Casey, Warren M.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: National Institute of Environmental Health Sciences 2015
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4858395/
https://www.ncbi.nlm.nih.gov/pubmed/26431337
http://dx.doi.org/10.1289/ehp.1510183
Descripción
Sumario:BACKGROUND: Novel in vitro methods are being developed to identify chemicals that may interfere with estrogen receptor (ER) signaling, but the results are difficult to put into biological context because of reliance on reference chemicals established using results from other in vitro assays and because of the lack of high-quality in vivo reference data. The Organisation for Economic Co-operation and Development (OECD)-validated rodent uterotrophic bioassay is considered the “gold standard” for identifying potential ER agonists. OBJECTIVES: We performed a comprehensive literature review to identify and evaluate data from uterotrophic studies and to analyze study variability. METHODS: We reviewed 670 articles with results from 2,615 uterotrophic bioassays using 235 unique chemicals. Study descriptors, such as species/strain, route of administration, dosing regimen, lowest effect level, and test outcome, were captured in a database of uterotrophic results. Studies were assessed for adherence to six criteria that were based on uterotrophic regulatory test guidelines. Studies meeting all six criteria (458 bioassays on 118 unique chemicals) were considered guideline-like (GL) and were subsequently analyzed. RESULTS: The immature rat model was used for 76% of the GL studies. Active outcomes were more prevalent across rat models (74% active) than across mouse models (36% active). Of the 70 chemicals with at least two GL studies, 18 (26%) had discordant outcomes and were classified as both active and inactive. Many discordant results were attributable to differences in study design (e.g., injection vs. oral dosing). CONCLUSIONS: This uterotrophic database provides a valuable resource for understanding in vivo outcome variability and for evaluating the performance of in vitro assays that measure estrogenic activity. CITATION: Kleinstreuer NC, Ceger PC, Allen DG, Strickland J, Chang X, Hamm JT, Casey WM. 2016. A curated database of rodent uterotrophic bioactivity. Environ Health Perspect 124:556–562; http://dx.doi.org/10.1289/ehp.1510183