Cargando…
STIM1-dependent Ca(2+) microdomains are required for myofilament remodeling and signaling in the heart
In non-excitable cells stromal interaction molecule 1 (STIM1) is a key element in the generation of Ca(2+) signals that lead to gene expression, migration and cell proliferation. A growing body of literature suggests that STIM1 plays a key role in the development of pathological cardiac hypertrophy....
Autores principales: | , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group
2016
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4858716/ https://www.ncbi.nlm.nih.gov/pubmed/27150728 http://dx.doi.org/10.1038/srep25372 |
Sumario: | In non-excitable cells stromal interaction molecule 1 (STIM1) is a key element in the generation of Ca(2+) signals that lead to gene expression, migration and cell proliferation. A growing body of literature suggests that STIM1 plays a key role in the development of pathological cardiac hypertrophy. However, the precise mechanisms involving STIM-dependent Ca(2+) signaling in the heart are not clearly established. Here, we have investigated the STIM1-associated Ca(2+) signals in cardiomyocytes and their relevance to pathological cardiac remodeling. We show that mice with inducible, cardiac-restricted, ablation of STIM1 exhibited left ventricular reduced contractility, which was corroborated by impaired single cell contractility. The spatial properties of STIM1-dependent Ca(2+) signals determine restricted Ca(2+) microdomains that regulate myofilament remodeling and activate spatially segregated pro-hypertrophic factors. Indeed, mice lacking STIM1 showed less adverse structural remodeling in response to pressure overload-induced cardiac hypertrophy. These results highlight how STIM1-dependent Ca(2+) microdomains have a major impact on intracellular Ca(2+) homeostasis, cytoskeletal remodeling and cellular signaling, even when excitation-contraction coupling is present. |
---|