Cargando…
Tree inference for single-cell data
Understanding the mutational heterogeneity within tumors is a keystone for the development of efficient cancer therapies. Here, we present SCITE, a stochastic search algorithm to identify the evolutionary history of a tumor from noisy and incomplete mutation profiles of single cells. SCITE comprises...
Autores principales: | Jahn, Katharina, Kuipers, Jack, Beerenwinkel, Niko |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2016
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4858868/ https://www.ncbi.nlm.nih.gov/pubmed/27149953 http://dx.doi.org/10.1186/s13059-016-0936-x |
Ejemplares similares
-
Single-cell sequencing data reveal widespread recurrence and loss of mutational hits in the life histories of tumors
por: Kuipers, Jack, et al.
Publicado: (2017) -
Single-cell mutation identification via phylogenetic inference
por: Singer, Jochen, et al.
Publicado: (2018) -
Integrative inference of subclonal tumour evolution from single-cell and bulk sequencing data
por: Malikic, Salem, et al.
Publicado: (2019) -
SIEVE: joint inference of single-nucleotide variants and cell phylogeny from single-cell DNA sequencing data
por: Kang, Senbai, et al.
Publicado: (2022) -
Advances in understanding tumour evolution through single-cell sequencing()
por: Kuipers, Jack, et al.
Publicado: (2017)