Cargando…

“Ask Ernö”: a self-learning tool for assignment and prediction of nuclear magnetic resonance spectra

BACKGROUND: We present “Ask Ernö”, a self-learning system for the automatic analysis of NMR spectra, consisting of integrated chemical shift assignment and prediction tools. The output of the automatic assignment component initializes and improves a database of assigned protons that is used by the c...

Descripción completa

Detalles Bibliográficos
Autores principales: Castillo, Andrés M., Bernal, Andrés, Dieden, Reiner, Patiny, Luc, Wist, Julien
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Springer International Publishing 2016
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4858875/
https://www.ncbi.nlm.nih.gov/pubmed/27158267
http://dx.doi.org/10.1186/s13321-016-0134-6
Descripción
Sumario:BACKGROUND: We present “Ask Ernö”, a self-learning system for the automatic analysis of NMR spectra, consisting of integrated chemical shift assignment and prediction tools. The output of the automatic assignment component initializes and improves a database of assigned protons that is used by the chemical shift predictor. In turn, the predictions provided by the latter facilitate improvement of the assignment process. Iteration on these steps allows Ask Ernö to improve its ability to assign and predict spectra without any prior knowledge or assistance from human experts. RESULTS: This concept was tested by training such a system with a dataset of 2341 molecules and their (1)H-NMR spectra, and evaluating the accuracy of chemical shift predictions on a test set of 298 partially assigned molecules (2007 assigned protons). After 10 iterations, Ask Ernö was able to decrease its prediction error by 17 %, reaching an average error of 0.265 ppm. Over 60 % of the test chemical shifts were predicted within 0.2 ppm, while only 5 % still presented a prediction error of more than 1 ppm. CONCLUSIONS: Ask Ernö introduces an innovative approach to automatic NMR analysis that constantly learns and improves when provided with new data. Furthermore, it completely avoids the need for manually assigned spectra. This system has the potential to be turned into a fully autonomous tool able to compete with the best alternatives currently available. [Figure: see text] ELECTRONIC SUPPLEMENTARY MATERIAL: The online version of this article (doi:10.1186/s13321-016-0134-6) contains supplementary material, which is available to authorized users.