Cargando…
Temozolomide promotes genomic and phenotypic changes in glioblastoma cells
BACKGROUND: Temozolomide (TMZ) is a first-line drug for the treatment of glioblastoma. Long-term TMZ-treated tumour cells acquire TMZ resistance by profound reprogramming of the transcriptome, proteome, kinome, metabolism, and demonstrate versatile and opposite changes in proliferation, invasion, in...
Autores principales: | , , , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2016
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4858898/ https://www.ncbi.nlm.nih.gov/pubmed/27158244 http://dx.doi.org/10.1186/s12935-016-0311-8 |
_version_ | 1782430878276780032 |
---|---|
author | Stepanenko, Aleksei A. Andreieva, Svitlana V. Korets, Kateryna V. Mykytenko, Dmytro O. Baklaushev, Vladimir P. Huleyuk, Nataliya L. Kovalova, Oksana A. Kotsarenko, Kateryna V. Chekhonin, Vladimir P. Vassetzky, Yegor S. Avdieiev, Stanislav S. Dmitrenko, Vladimir V. |
author_facet | Stepanenko, Aleksei A. Andreieva, Svitlana V. Korets, Kateryna V. Mykytenko, Dmytro O. Baklaushev, Vladimir P. Huleyuk, Nataliya L. Kovalova, Oksana A. Kotsarenko, Kateryna V. Chekhonin, Vladimir P. Vassetzky, Yegor S. Avdieiev, Stanislav S. Dmitrenko, Vladimir V. |
author_sort | Stepanenko, Aleksei A. |
collection | PubMed |
description | BACKGROUND: Temozolomide (TMZ) is a first-line drug for the treatment of glioblastoma. Long-term TMZ-treated tumour cells acquire TMZ resistance by profound reprogramming of the transcriptome, proteome, kinome, metabolism, and demonstrate versatile and opposite changes in proliferation, invasion, in vivo growth, and drug cross-resistance. We hypothesized that chromosomal instability (CIN) may be implicated in the generation of TMZ-driven molecular and phenotype diversity. CIN refers to the rate (cell-to-cell variability) with which whole chromosomes or portions of chromosomes are gained or lost. METHODS: The long-term TMZ-treated cell lines were established in vitro (U251TMZ1, U251TMZ2, T98GTMZ and C6TMZ) and in vivo (C6R2TMZ). A glioma model was achieved by the intracerebral stereotactic implantation of C6 cells into the striatum region of rats. Genomic and phenotypic changes were analyzed by conventional cytogenetics, array CGH, trypan blue exclusion assay, soft agar colony formation assay, scratch wound healing assay, transwell invasion assay, quantitative polymerase chain reaction, and Western blotting. RESULTS: Long-term TMZ treatment increased CIN-mediated genomic diversity in U251TMZ1, U251TMZ2 and T98GTMZ cells but reduced it in C6TMZ and C6R2TMZ cells. U251TMZ1 and U251TMZ2 cell lines, established in parallel with a similar treatment procedure with the only difference in the duration of treatment, underwent individual phenotypic changes. U251TMZ1 had a reduced proliferation and invasion but increased migration, whereas U251TMZ2 had an enhanced proliferation and invasion but no changes in migration. U251TMZ1 and U251TMZ2 cells demonstrated individual patterns in expression/activation of signal transduction proteins (e.g., MDM2, p53, ERK, AKT, and ASK). C6TMZ and C6R2TMZ cells had lower proliferation, colony formation efficiency and migration, whereas T98GTMZ cells had increased colony formation efficiency without any changes in proliferation, migration, and invasion. TMZ-treated lines demonstrated a differential response to a reduction in glucose concentration and an increased resistance to TMZ re-challenge but not temsirolimus (mTOR inhibitor) or U0126 (MEK1/2 inhibitor) treatment. CONCLUSION: Long-term TMZ treatment selected resistant genotype-phenotype variants or generated novel versatile phenotypes by increasing CIN. An increase of resistance to TMZ re-challenge seems to be the only predictable trait intrinsic to all long-term TMZ-treated tumour cells. Changes in genomic diversity may be responsible for heterogeneous phenotypes of TMZ-treated cell lines. ELECTRONIC SUPPLEMENTARY MATERIAL: The online version of this article (doi:10.1186/s12935-016-0311-8) contains supplementary material, which is available to authorized users. |
format | Online Article Text |
id | pubmed-4858898 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2016 |
publisher | BioMed Central |
record_format | MEDLINE/PubMed |
spelling | pubmed-48588982016-05-07 Temozolomide promotes genomic and phenotypic changes in glioblastoma cells Stepanenko, Aleksei A. Andreieva, Svitlana V. Korets, Kateryna V. Mykytenko, Dmytro O. Baklaushev, Vladimir P. Huleyuk, Nataliya L. Kovalova, Oksana A. Kotsarenko, Kateryna V. Chekhonin, Vladimir P. Vassetzky, Yegor S. Avdieiev, Stanislav S. Dmitrenko, Vladimir V. Cancer Cell Int Primary Research BACKGROUND: Temozolomide (TMZ) is a first-line drug for the treatment of glioblastoma. Long-term TMZ-treated tumour cells acquire TMZ resistance by profound reprogramming of the transcriptome, proteome, kinome, metabolism, and demonstrate versatile and opposite changes in proliferation, invasion, in vivo growth, and drug cross-resistance. We hypothesized that chromosomal instability (CIN) may be implicated in the generation of TMZ-driven molecular and phenotype diversity. CIN refers to the rate (cell-to-cell variability) with which whole chromosomes or portions of chromosomes are gained or lost. METHODS: The long-term TMZ-treated cell lines were established in vitro (U251TMZ1, U251TMZ2, T98GTMZ and C6TMZ) and in vivo (C6R2TMZ). A glioma model was achieved by the intracerebral stereotactic implantation of C6 cells into the striatum region of rats. Genomic and phenotypic changes were analyzed by conventional cytogenetics, array CGH, trypan blue exclusion assay, soft agar colony formation assay, scratch wound healing assay, transwell invasion assay, quantitative polymerase chain reaction, and Western blotting. RESULTS: Long-term TMZ treatment increased CIN-mediated genomic diversity in U251TMZ1, U251TMZ2 and T98GTMZ cells but reduced it in C6TMZ and C6R2TMZ cells. U251TMZ1 and U251TMZ2 cell lines, established in parallel with a similar treatment procedure with the only difference in the duration of treatment, underwent individual phenotypic changes. U251TMZ1 had a reduced proliferation and invasion but increased migration, whereas U251TMZ2 had an enhanced proliferation and invasion but no changes in migration. U251TMZ1 and U251TMZ2 cells demonstrated individual patterns in expression/activation of signal transduction proteins (e.g., MDM2, p53, ERK, AKT, and ASK). C6TMZ and C6R2TMZ cells had lower proliferation, colony formation efficiency and migration, whereas T98GTMZ cells had increased colony formation efficiency without any changes in proliferation, migration, and invasion. TMZ-treated lines demonstrated a differential response to a reduction in glucose concentration and an increased resistance to TMZ re-challenge but not temsirolimus (mTOR inhibitor) or U0126 (MEK1/2 inhibitor) treatment. CONCLUSION: Long-term TMZ treatment selected resistant genotype-phenotype variants or generated novel versatile phenotypes by increasing CIN. An increase of resistance to TMZ re-challenge seems to be the only predictable trait intrinsic to all long-term TMZ-treated tumour cells. Changes in genomic diversity may be responsible for heterogeneous phenotypes of TMZ-treated cell lines. ELECTRONIC SUPPLEMENTARY MATERIAL: The online version of this article (doi:10.1186/s12935-016-0311-8) contains supplementary material, which is available to authorized users. BioMed Central 2016-05-05 /pmc/articles/PMC4858898/ /pubmed/27158244 http://dx.doi.org/10.1186/s12935-016-0311-8 Text en © Stepanenko et al. 2016 Open AccessThis article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated. |
spellingShingle | Primary Research Stepanenko, Aleksei A. Andreieva, Svitlana V. Korets, Kateryna V. Mykytenko, Dmytro O. Baklaushev, Vladimir P. Huleyuk, Nataliya L. Kovalova, Oksana A. Kotsarenko, Kateryna V. Chekhonin, Vladimir P. Vassetzky, Yegor S. Avdieiev, Stanislav S. Dmitrenko, Vladimir V. Temozolomide promotes genomic and phenotypic changes in glioblastoma cells |
title | Temozolomide promotes genomic and phenotypic changes in glioblastoma cells |
title_full | Temozolomide promotes genomic and phenotypic changes in glioblastoma cells |
title_fullStr | Temozolomide promotes genomic and phenotypic changes in glioblastoma cells |
title_full_unstemmed | Temozolomide promotes genomic and phenotypic changes in glioblastoma cells |
title_short | Temozolomide promotes genomic and phenotypic changes in glioblastoma cells |
title_sort | temozolomide promotes genomic and phenotypic changes in glioblastoma cells |
topic | Primary Research |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4858898/ https://www.ncbi.nlm.nih.gov/pubmed/27158244 http://dx.doi.org/10.1186/s12935-016-0311-8 |
work_keys_str_mv | AT stepanenkoalekseia temozolomidepromotesgenomicandphenotypicchangesinglioblastomacells AT andreievasvitlanav temozolomidepromotesgenomicandphenotypicchangesinglioblastomacells AT koretskaterynav temozolomidepromotesgenomicandphenotypicchangesinglioblastomacells AT mykytenkodmytroo temozolomidepromotesgenomicandphenotypicchangesinglioblastomacells AT baklaushevvladimirp temozolomidepromotesgenomicandphenotypicchangesinglioblastomacells AT huleyuknataliyal temozolomidepromotesgenomicandphenotypicchangesinglioblastomacells AT kovalovaoksanaa temozolomidepromotesgenomicandphenotypicchangesinglioblastomacells AT kotsarenkokaterynav temozolomidepromotesgenomicandphenotypicchangesinglioblastomacells AT chekhoninvladimirp temozolomidepromotesgenomicandphenotypicchangesinglioblastomacells AT vassetzkyyegors temozolomidepromotesgenomicandphenotypicchangesinglioblastomacells AT avdieievstanislavs temozolomidepromotesgenomicandphenotypicchangesinglioblastomacells AT dmitrenkovladimirv temozolomidepromotesgenomicandphenotypicchangesinglioblastomacells |