Cargando…
Optical Diffraction in Close Proximity to Plane Apertures. I. Boundary-Value Solutions for Circular Apertures and Slits
In this paper the classical Rayleigh-Sommerfeld and Kirchhoff boundary-value diffraction integrals are solved in closed form for circular apertures and slits illuminated by normally incident plane waves. The mathematical expressions obtained involve no simplifying approximations and are free of sing...
Autor principal: | Mielenz, Klaus D. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
[Gaithersburg, MD] : U.S. Dept. of Commerce, National Institute of Standards and Technology
2002
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4859263/ https://www.ncbi.nlm.nih.gov/pubmed/27446736 http://dx.doi.org/10.6028/jres.107.028 |
Ejemplares similares
-
Optical Diffraction in Close Proximity to Plane Apertures. II. Comparison of Half-Plane Diffraction Theories
por: Mielenz, Klaus D.
Publicado: (2003) -
Optical Diffraction in Close Proximity to Plane Apertures. III. Modified, Self-Consistent Theory
por: Mielenz, Klaus D.
Publicado: (2004) -
Optical Diffraction in Close Proximity to Plane Apertures. IV. Test of a Pseudo-Vectorial Theory
por: Mielenz, Klaus D.
Publicado: (2006) -
Algorithms for Fresnel Diffraction at Rectangular and Circular Apertures
por: Mielenz, Klaus D.
Publicado: (1998) -
Scalar diffraction from a circular aperture
por: Daly, Charles J, et al.
Publicado: (2000)