Cargando…

Novel Bloodless Potassium Determination Using a Signal‐Processed Single‐Lead ECG

BACKGROUND: Hyper‐ and hypokalemia are clinically silent, common in patients with renal or cardiac disease, and are life threatening. A noninvasive, unobtrusive, blood‐free method for tracking potassium would be an important clinical advance. METHODS AND RESULTS: Two groups of hemodialysis patients...

Descripción completa

Detalles Bibliográficos
Autores principales: Attia, Zachi I., DeSimone, Christopher V., Dillon, John J., Sapir, Yehu, Somers, Virend K., Dugan, Jennifer L., Bruce, Charles J., Ackerman, Michael J., Asirvatham, Samuel J., Striemer, Bryan L., Bukartyk, Jan, Scott, Christopher G., Bennet, Kevin E., Ladewig, Dorothy J., Gilles, Emily J., Sadot, Dan, Geva, Amir B., Friedman, Paul A.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: John Wiley and Sons Inc. 2016
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4859394/
https://www.ncbi.nlm.nih.gov/pubmed/26811164
http://dx.doi.org/10.1161/JAHA.115.002746
_version_ 1782430958686830592
author Attia, Zachi I.
DeSimone, Christopher V.
Dillon, John J.
Sapir, Yehu
Somers, Virend K.
Dugan, Jennifer L.
Bruce, Charles J.
Ackerman, Michael J.
Asirvatham, Samuel J.
Striemer, Bryan L.
Bukartyk, Jan
Scott, Christopher G.
Bennet, Kevin E.
Ladewig, Dorothy J.
Gilles, Emily J.
Sadot, Dan
Geva, Amir B.
Friedman, Paul A.
author_facet Attia, Zachi I.
DeSimone, Christopher V.
Dillon, John J.
Sapir, Yehu
Somers, Virend K.
Dugan, Jennifer L.
Bruce, Charles J.
Ackerman, Michael J.
Asirvatham, Samuel J.
Striemer, Bryan L.
Bukartyk, Jan
Scott, Christopher G.
Bennet, Kevin E.
Ladewig, Dorothy J.
Gilles, Emily J.
Sadot, Dan
Geva, Amir B.
Friedman, Paul A.
author_sort Attia, Zachi I.
collection PubMed
description BACKGROUND: Hyper‐ and hypokalemia are clinically silent, common in patients with renal or cardiac disease, and are life threatening. A noninvasive, unobtrusive, blood‐free method for tracking potassium would be an important clinical advance. METHODS AND RESULTS: Two groups of hemodialysis patients (development group, n=26; validation group, n=19) underwent high‐resolution digital ECG recordings and had 2 to 3 blood tests during dialysis. Using advanced signal processing, we developed a personalized regression model for each patient to noninvasively calculate potassium values during the second and third dialysis sessions using only the processed single‐channel ECG. In addition, by analyzing the entire development group's first‐visit data, we created a global model for all patients that was validated against subsequent sessions in the development group and in a separate validation group. This global model sought to predict potassium, based on the T wave characteristics, with no blood tests required. For the personalized model, we successfully calculated potassium values with an absolute error of 0.36±0.34 mmol/L (or 10% of the measured blood potassium). For the global model, potassium prediction was also accurate, with an absolute error of 0.44±0.47 mmol/L for the training group (or 11% of the measured blood potassium) and 0.5±0.42 for the validation set (or 12% of the measured blood potassium). CONCLUSIONS: The signal‐processed ECG derived from a single lead can be used to calculate potassium values with clinically meaningful resolution using a strategy that requires no blood tests. This enables a cost‐effective, noninvasive, unobtrusive strategy for potassium assessment that can be used during remote monitoring.
format Online
Article
Text
id pubmed-4859394
institution National Center for Biotechnology Information
language English
publishDate 2016
publisher John Wiley and Sons Inc.
record_format MEDLINE/PubMed
spelling pubmed-48593942016-05-20 Novel Bloodless Potassium Determination Using a Signal‐Processed Single‐Lead ECG Attia, Zachi I. DeSimone, Christopher V. Dillon, John J. Sapir, Yehu Somers, Virend K. Dugan, Jennifer L. Bruce, Charles J. Ackerman, Michael J. Asirvatham, Samuel J. Striemer, Bryan L. Bukartyk, Jan Scott, Christopher G. Bennet, Kevin E. Ladewig, Dorothy J. Gilles, Emily J. Sadot, Dan Geva, Amir B. Friedman, Paul A. J Am Heart Assoc Original Research BACKGROUND: Hyper‐ and hypokalemia are clinically silent, common in patients with renal or cardiac disease, and are life threatening. A noninvasive, unobtrusive, blood‐free method for tracking potassium would be an important clinical advance. METHODS AND RESULTS: Two groups of hemodialysis patients (development group, n=26; validation group, n=19) underwent high‐resolution digital ECG recordings and had 2 to 3 blood tests during dialysis. Using advanced signal processing, we developed a personalized regression model for each patient to noninvasively calculate potassium values during the second and third dialysis sessions using only the processed single‐channel ECG. In addition, by analyzing the entire development group's first‐visit data, we created a global model for all patients that was validated against subsequent sessions in the development group and in a separate validation group. This global model sought to predict potassium, based on the T wave characteristics, with no blood tests required. For the personalized model, we successfully calculated potassium values with an absolute error of 0.36±0.34 mmol/L (or 10% of the measured blood potassium). For the global model, potassium prediction was also accurate, with an absolute error of 0.44±0.47 mmol/L for the training group (or 11% of the measured blood potassium) and 0.5±0.42 for the validation set (or 12% of the measured blood potassium). CONCLUSIONS: The signal‐processed ECG derived from a single lead can be used to calculate potassium values with clinically meaningful resolution using a strategy that requires no blood tests. This enables a cost‐effective, noninvasive, unobtrusive strategy for potassium assessment that can be used during remote monitoring. John Wiley and Sons Inc. 2016-01-25 /pmc/articles/PMC4859394/ /pubmed/26811164 http://dx.doi.org/10.1161/JAHA.115.002746 Text en © 2016 The Authors. Published on behalf of the American Heart Association, Inc., by Wiley Blackwell. This is an open access article under the terms of the Creative Commons Attribution‐NonCommercial (http://creativecommons.org/licenses/by-nc/4.0/) License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited and is not used for commercial purposes.
spellingShingle Original Research
Attia, Zachi I.
DeSimone, Christopher V.
Dillon, John J.
Sapir, Yehu
Somers, Virend K.
Dugan, Jennifer L.
Bruce, Charles J.
Ackerman, Michael J.
Asirvatham, Samuel J.
Striemer, Bryan L.
Bukartyk, Jan
Scott, Christopher G.
Bennet, Kevin E.
Ladewig, Dorothy J.
Gilles, Emily J.
Sadot, Dan
Geva, Amir B.
Friedman, Paul A.
Novel Bloodless Potassium Determination Using a Signal‐Processed Single‐Lead ECG
title Novel Bloodless Potassium Determination Using a Signal‐Processed Single‐Lead ECG
title_full Novel Bloodless Potassium Determination Using a Signal‐Processed Single‐Lead ECG
title_fullStr Novel Bloodless Potassium Determination Using a Signal‐Processed Single‐Lead ECG
title_full_unstemmed Novel Bloodless Potassium Determination Using a Signal‐Processed Single‐Lead ECG
title_short Novel Bloodless Potassium Determination Using a Signal‐Processed Single‐Lead ECG
title_sort novel bloodless potassium determination using a signal‐processed single‐lead ecg
topic Original Research
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4859394/
https://www.ncbi.nlm.nih.gov/pubmed/26811164
http://dx.doi.org/10.1161/JAHA.115.002746
work_keys_str_mv AT attiazachii novelbloodlesspotassiumdeterminationusingasignalprocessedsingleleadecg
AT desimonechristopherv novelbloodlesspotassiumdeterminationusingasignalprocessedsingleleadecg
AT dillonjohnj novelbloodlesspotassiumdeterminationusingasignalprocessedsingleleadecg
AT sapiryehu novelbloodlesspotassiumdeterminationusingasignalprocessedsingleleadecg
AT somersvirendk novelbloodlesspotassiumdeterminationusingasignalprocessedsingleleadecg
AT duganjenniferl novelbloodlesspotassiumdeterminationusingasignalprocessedsingleleadecg
AT brucecharlesj novelbloodlesspotassiumdeterminationusingasignalprocessedsingleleadecg
AT ackermanmichaelj novelbloodlesspotassiumdeterminationusingasignalprocessedsingleleadecg
AT asirvathamsamuelj novelbloodlesspotassiumdeterminationusingasignalprocessedsingleleadecg
AT striemerbryanl novelbloodlesspotassiumdeterminationusingasignalprocessedsingleleadecg
AT bukartykjan novelbloodlesspotassiumdeterminationusingasignalprocessedsingleleadecg
AT scottchristopherg novelbloodlesspotassiumdeterminationusingasignalprocessedsingleleadecg
AT bennetkevine novelbloodlesspotassiumdeterminationusingasignalprocessedsingleleadecg
AT ladewigdorothyj novelbloodlesspotassiumdeterminationusingasignalprocessedsingleleadecg
AT gillesemilyj novelbloodlesspotassiumdeterminationusingasignalprocessedsingleleadecg
AT sadotdan novelbloodlesspotassiumdeterminationusingasignalprocessedsingleleadecg
AT gevaamirb novelbloodlesspotassiumdeterminationusingasignalprocessedsingleleadecg
AT friedmanpaula novelbloodlesspotassiumdeterminationusingasignalprocessedsingleleadecg