Cargando…
Testing Rare-Variant Association without Calling Genotypes Allows for Systematic Differences in Sequencing between Cases and Controls
Next-generation sequencing of DNA provides an unprecedented opportunity to discover rare genetic variants associated with complex diseases and traits. However, the common practice of first calling underlying genotypes and then treating the called values as known is prone to false positive findings,...
Autores principales: | , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2016
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4859496/ https://www.ncbi.nlm.nih.gov/pubmed/27152526 http://dx.doi.org/10.1371/journal.pgen.1006040 |
_version_ | 1782430973264134144 |
---|---|
author | Hu, Yi-Juan Liao, Peizhou Johnston, H. Richard Allen, Andrew S. Satten, Glen A. |
author_facet | Hu, Yi-Juan Liao, Peizhou Johnston, H. Richard Allen, Andrew S. Satten, Glen A. |
author_sort | Hu, Yi-Juan |
collection | PubMed |
description | Next-generation sequencing of DNA provides an unprecedented opportunity to discover rare genetic variants associated with complex diseases and traits. However, the common practice of first calling underlying genotypes and then treating the called values as known is prone to false positive findings, especially when genotyping errors are systematically different between cases and controls. This happens whenever cases and controls are sequenced at different depths, on different platforms, or in different batches. In this article, we provide a likelihood-based approach to testing rare variant associations that directly models sequencing reads without calling genotypes. We consider the (weighted) burden test statistic, which is the (weighted) sum of the score statistic for assessing effects of individual variants on the trait of interest. Because variant locations are unknown, we develop a simple, computationally efficient screening algorithm to estimate the loci that are variants. Because our burden statistic may not have mean zero after screening, we develop a novel bootstrap procedure for assessing the significance of the burden statistic. We demonstrate through extensive simulation studies that the proposed tests are robust to a wide range of differential sequencing qualities between cases and controls, and are at least as powerful as the standard genotype calling approach when the latter controls type I error. An application to the UK10K data reveals novel rare variants in gene BTBD18 associated with childhood onset obesity. The relevant software is freely available. |
format | Online Article Text |
id | pubmed-4859496 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2016 |
publisher | Public Library of Science |
record_format | MEDLINE/PubMed |
spelling | pubmed-48594962016-05-13 Testing Rare-Variant Association without Calling Genotypes Allows for Systematic Differences in Sequencing between Cases and Controls Hu, Yi-Juan Liao, Peizhou Johnston, H. Richard Allen, Andrew S. Satten, Glen A. PLoS Genet Research Article Next-generation sequencing of DNA provides an unprecedented opportunity to discover rare genetic variants associated with complex diseases and traits. However, the common practice of first calling underlying genotypes and then treating the called values as known is prone to false positive findings, especially when genotyping errors are systematically different between cases and controls. This happens whenever cases and controls are sequenced at different depths, on different platforms, or in different batches. In this article, we provide a likelihood-based approach to testing rare variant associations that directly models sequencing reads without calling genotypes. We consider the (weighted) burden test statistic, which is the (weighted) sum of the score statistic for assessing effects of individual variants on the trait of interest. Because variant locations are unknown, we develop a simple, computationally efficient screening algorithm to estimate the loci that are variants. Because our burden statistic may not have mean zero after screening, we develop a novel bootstrap procedure for assessing the significance of the burden statistic. We demonstrate through extensive simulation studies that the proposed tests are robust to a wide range of differential sequencing qualities between cases and controls, and are at least as powerful as the standard genotype calling approach when the latter controls type I error. An application to the UK10K data reveals novel rare variants in gene BTBD18 associated with childhood onset obesity. The relevant software is freely available. Public Library of Science 2016-05-06 /pmc/articles/PMC4859496/ /pubmed/27152526 http://dx.doi.org/10.1371/journal.pgen.1006040 Text en https://creativecommons.org/publicdomain/zero/1.0/ This is an open access article, free of all copyright, and may be freely reproduced, distributed, transmitted, modified, built upon, or otherwise used by anyone for any lawful purpose. The work is made available under the Creative Commons CC0 (https://creativecommons.org/publicdomain/zero/1.0/) public domain dedication. |
spellingShingle | Research Article Hu, Yi-Juan Liao, Peizhou Johnston, H. Richard Allen, Andrew S. Satten, Glen A. Testing Rare-Variant Association without Calling Genotypes Allows for Systematic Differences in Sequencing between Cases and Controls |
title | Testing Rare-Variant Association without Calling Genotypes Allows for Systematic Differences in Sequencing between Cases and Controls |
title_full | Testing Rare-Variant Association without Calling Genotypes Allows for Systematic Differences in Sequencing between Cases and Controls |
title_fullStr | Testing Rare-Variant Association without Calling Genotypes Allows for Systematic Differences in Sequencing between Cases and Controls |
title_full_unstemmed | Testing Rare-Variant Association without Calling Genotypes Allows for Systematic Differences in Sequencing between Cases and Controls |
title_short | Testing Rare-Variant Association without Calling Genotypes Allows for Systematic Differences in Sequencing between Cases and Controls |
title_sort | testing rare-variant association without calling genotypes allows for systematic differences in sequencing between cases and controls |
topic | Research Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4859496/ https://www.ncbi.nlm.nih.gov/pubmed/27152526 http://dx.doi.org/10.1371/journal.pgen.1006040 |
work_keys_str_mv | AT huyijuan testingrarevariantassociationwithoutcallinggenotypesallowsforsystematicdifferencesinsequencingbetweencasesandcontrols AT liaopeizhou testingrarevariantassociationwithoutcallinggenotypesallowsforsystematicdifferencesinsequencingbetweencasesandcontrols AT johnstonhrichard testingrarevariantassociationwithoutcallinggenotypesallowsforsystematicdifferencesinsequencingbetweencasesandcontrols AT allenandrews testingrarevariantassociationwithoutcallinggenotypesallowsforsystematicdifferencesinsequencingbetweencasesandcontrols AT sattenglena testingrarevariantassociationwithoutcallinggenotypesallowsforsystematicdifferencesinsequencingbetweencasesandcontrols |