Cargando…
Graph mining for next generation sequencing: leveraging the assembly graph for biological insights
BACKGROUND: The assembly of Next Generation Sequencing (NGS) reads remains a challenging task. This is especially true for the assembly of metagenomics data that originate from environmental samples potentially containing hundreds to thousands of unique species. The principle objective of current as...
Autores principales: | Warnke-Sommer, Julia, Ali, Hesham |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2016
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4859950/ https://www.ncbi.nlm.nih.gov/pubmed/27154001 http://dx.doi.org/10.1186/s12864-016-2678-2 |
Ejemplares similares
-
An efficient and scalable graph modeling approach for capturing information at different levels in next generation sequencing reads
por: Warnke, Julia D, et al.
Publicado: (2013) -
SeedsGraph: an efficient assembler for next-generation sequencing data
por: Wang, Chunyu, et al.
Publicado: (2015) -
Graph-based clustering and characterization of repetitive sequences in next-generation sequencing data
por: Novák, Petr, et al.
Publicado: (2010) -
FlexGraph: Flexible partitioning and storage for scalable graph mining
por: Park, Chiwan, et al.
Publicado: (2020) -
A Graph Approach to Mining Biological Patterns in the Binding Interfaces
por: Cheng, Wen, et al.
Publicado: (2017)